Advertisement

Estuaries and Coasts

, Volume 38, Issue 2, pp 434–450 | Cite as

Sediment Deposition and Accretion Rates in Tidal Marshes Are Highly Variable Along Estuarine Salinity and Flooding Gradients

  • C. ButzeckEmail author
  • A. Eschenbach
  • A. Gröngröft
  • K. Hansen
  • S. Nolte
  • K. Jensen
Article

Abstract

Vertical accretion in estuarine marshes depends on rates of sediment deposition and is a complex function of different interacting variables. In times of climate change and associated sea-level rise, knowledge about the relation between these variables and sediment deposition and accretion rates is gaining high importance. Therefore, we studied spatial and temporal variation in short-term sediment deposition rates and its possible predictors in three marsh types along an estuarine salinity gradient. Between March 2010 and March 2011, bi-weekly sediment deposition was quantified along three transects, reflecting the variability in elevation (low to high marsh) and distance to the sediment source, in each of one tidal freshwater, brackish, and salt marsh at the Elbe Estuary (Germany). Simultaneously, water-level fluctuations and suspended sediment concentration (SSC) were recorded, and aboveground plant biomass was sampled once in late summer and once by the end of winter, respectively. Annual sediment deposition (17.5 ± 4.0 kg m−2) and calculated accretion rates (20.3 ± 4.7 mm year−1) were highest in the brackish low marsh and were between 51 and 71 % lower in the low tidal freshwater and the salt marsh, respectively. Highest SSC and longest inundations were found during fall and winter. Flooding duration and frequency were higher in the tidal freshwater than in the brackish and the salt marsh. Aboveground, plant biomass of the regularly flooded vegetation stratum (0–50 cm above soil surface) did not differ between marsh types, but the spatial pattern changed between late summer and early spring. In all three marsh types, decreasing sediment deposition rates with increasing distances from the sedimentation source were recorded. The applied multiple regression models were able to explain 74, 79, and 71 % of variation in sediment deposition patterns in tidal freshwater, brackish, and salt marshes, respectively. SSC was the most important model predictor variable. Our results emphasize the importance of considering spatial and temporal variations in sediment deposition rates and its predictors. According to our findings, sediment deposition rates in the investigated tidal low marshes of the Elbe Estuary seem to be sufficient to compensate moderate rates of sea-level rise. Contrastingly, high salt marshes might be vulnerable due to insufficient input of sediment and might regress into low marshes, partly.

Keywords

Tidal freshwater marsh Brackish marsh Salt marsh Sediment deposition Accretion rates Suspended sediments Inundation Sea-level rise Germany Schleswig-Holstein Elbe Estuary (53° 40′ N; 9° 31′ E) 

Notes

Acknowledgments

The authors would like to thank all the students and colleagues; especially Melanie Griem, Theresa Martens and Janina Schnoor for their engagement in collecting and handling the sediment samples, Alena Lucht for collecting and analyzing the aboveground biomass, Sebastian Lindhorst and colleagues from the Institute of Geology and Paleontology (University of Hamburg) for processing the grain size analysis. We thank Martin Stock from the Schleswig-Holstein State Agency for Coastal Defence, National Park and Marine Conservation, the nature conservation authority of the District Pinneberg (Schleswig-Holstein), especially Uwe Helbing and Bernd-Ulrich Netz for administrative decision to work in the conservation areas. The work was funded by the Federal Ministry for Education and Research within the research project KLIMZUG-NORD and supported by the Estuary and Wetland Research Graduate School Hamburg (ESTRADE) as member of the State Excellence Initiative (LExI) funded by the Hamburg Science and Research Foundation. Additionally, we thank the handling editor and the two anonymous reviewers for their valuable comments.

References

  1. Ad-Hoc-Arbeitsgruppe Boden. 2005. Bodenkundliche Kartieranleitung. ed. Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten Hannover: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  2. Allen, J.R. 1990. Salt-marsh growth and stratification: A numerical model with special reference to the Severn Estuary, southwest Britain. Marine Geology 95: 77–96.CrossRefGoogle Scholar
  3. Allen, J.R. 2000. Morphodynamics of Holocene Salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19: 1155–1231.CrossRefGoogle Scholar
  4. Allen, J.R., and M.J. Duffy. 1998. Medium-term sedimentation on high intertidal mudflats and salt marshes in the Severn Estuary, SW Britain: the role of wind and tide. Marine Geology 150: 1–27.CrossRefGoogle Scholar
  5. ARGE Elbe. 1984. Gewässerökologische Studie. Ausbaumaßnahmen und deren Auswirkungen. Arbeitsgemeinschaft der Länder zur Reinhaltung der Elbe (ARGE Elbe). http://www.fgg-elbe.de/dokumente/fachberichte.html?file=tl_files/Download-Archive/Fachberichte/ Biomonitoring_allgemein/84Oekostudie.pdf. Accessed 09 April 2014.
  6. Austen, I., T.J. Andersen, and K. Edelvang. 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal a mudflat, the Danish Wadden Sea. Estuarine Coastal and Shelf Science 49: 99–111.CrossRefGoogle Scholar
  7. Bakker, J.P., J. Deleeuw, K.S. Dijkema, P.C. Leendertse, H.H. Prins, and J. Rozema. 1993. Salt marshes along the coast of the Netherlands. Hydrobiologia 265: 73–95.CrossRefGoogle Scholar
  8. Baldwin, A.H., and Irving A. Mendelssohn. 1998. Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change. Aquatic Botany 61: 255–268.CrossRefGoogle Scholar
  9. Bartholdy, J., C. Christiansen, and H. Kunzendorf. 2004. Long term variations in backbarrier salt marsh deposition on the Skallingen peninsula—the Danish Wadden Sea. Marine Geology 203: 1–21.CrossRefGoogle Scholar
  10. Bartholdy, J., J. Pedersen, and A. Bartholdy. 2010. Autocompaction of shallow silty salt marsh clay. Sedimentary Geology 223: 310–319.CrossRefGoogle Scholar
  11. Bartholomae, A., A. Kubicki, T.H. Badewien, and B.W. Flemming. 2009. Suspended sediment transport in the German Wadden. Sea-seasonal variations and extreme events. Ocean Dynamics 59: 213–225.CrossRefGoogle Scholar
  12. Bergemann, M., 2005. Berechnung des Salzgehaltes der Elbe, Hamburg. http://www.fgg-elbe.de/dokumente/fachberichte.html?file=tl_files/Download-Archive/Fachberichte/Salzhaushalt/05BerechnSalzgehalt.pdf. Accessed 09 April 2014.
  13. Bergemann, M. 2006. The Elbe estuary. Seine-Aval special issue. In North-Atlantic estuaries: problems and perspectives, ed J.C. Dauvin, 43–46. Rouen.Google Scholar
  14. Boorman, L.A., A. Garbutt, and D. Barratt. 1998. The role of vegetation in determining the patterns of accretion of salt marsh sediment. Geological Society, London, Special Publications 139: 340–399.CrossRefGoogle Scholar
  15. Boumans, R.M., and J.W. Day. 1993. High-precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16: 375–380.CrossRefGoogle Scholar
  16. Box, G.E., and D. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society series B-statistical methodology 26: 211–252.Google Scholar
  17. Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt. 1989. Accretion Rates and Sediment Accumulation in Rhode Island Salt Marshes. Estuaries 12: 300–317.CrossRefGoogle Scholar
  18. Brueske, C.C., and G.W. Barrett. 1994. Effects of vegetation and hydrologic load on sedimentation patterns in experimental wetland ecosystems. Ecological Engineering 3: 429–447.CrossRefGoogle Scholar
  19. Bun desamt für Seeschifffahrt und Hydrographie (BSH). 2010. Gezeitenkalender 2011: Hoch- und Niedrigwasserzeiten für die Deutsche Bucht und deren Flussgebiete. Hamburg: Bundesamt für Seeschifffahrt.Google Scholar
  20. Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29: 889–898.CrossRefGoogle Scholar
  21. Cahoon, D.R., and D.J. Reed. 1995. Relationships among marsh surface-topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt-marsh. Journal of Coastal Research 11: 357–369.Google Scholar
  22. Cahoon, D.R., D.J. Reed, and J.W. Day. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine geology 128: 1–9.CrossRefGoogle Scholar
  23. Cahoon, D.R., P.E. Marin, B.K. Black, and J.C. Lynch. 2000. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments. Journal of Sedimentary Research 70: 1250–1253.CrossRefGoogle Scholar
  24. Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72: 734–739.CrossRefGoogle Scholar
  25. Callaway, J.C., E.L. Borgnis, R.E. Turner, and C.S. Milan. 2012. Carbon Sequestration and Sediment Accretion in San Francisco Bay Tidal Wetlands. Estuaries and Coasts 35: 1163–1181.CrossRefGoogle Scholar
  26. Chmura, G.L., A. Coffey, and R. Crago. 2001. Variation in surface sediment deposition on salt marshes in the Bay of Fundy. Journal of Coastal Research 17: 221–227.Google Scholar
  27. Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine Coastal and Shelf Science 50: 315–331.CrossRefGoogle Scholar
  28. Davies, J.L. 1964. A morphogenetic approach to world shore-lines. Zeitschrift für Geomorphology 8: 127–142.Google Scholar
  29. Engels, J.G., and K. Jensen. 2009. Patterns of wetland plant diversity along estuarine stress gradients of the Elbe (Germany) and Connecticut (USA) Rivers. Plant Ecology and Diversity 2: 301–311.CrossRefGoogle Scholar
  30. Esselink, P., K.S. Dijkema, S. Reents, and G. Hageman. 1998. Vertical accretion and profile changes in abandoned man-made tidal marshes in the Dollard estuary, the Netherlands. Journal of Coastal Research 14: 570–582.Google Scholar
  31. Fettweis, M., M. Sas, and J. Monbaliu. 1998. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuarine Coastal and Shelf Science 47: 21–36.CrossRefGoogle Scholar
  32. Fickert, M., and T. Strotmann. 2007. Hydrodynamische Entwicklung der Tideelbe. Coastline Reports 9: 59–68.Google Scholar
  33. French, J.R. 1993. Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, U.K. Earth Surface Processes and Landforms 18: 63–81.CrossRefGoogle Scholar
  34. French, J.R., and H. Burningham. 2003. Tidal marsh sedimentation versus sea-level rise: a southeast England estuarine perspective. In Proceedings International Conference on Coastal Sediments 2003, ed. R.A. Davis, 1–14. Productions, Corpus Christi: World Scientific Publishing and East West.Google Scholar
  35. French, J., and T. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK. Marine Geology 110: 315–331.CrossRefGoogle Scholar
  36. Gönnert, G., H. von Storch, J. Jensen, S. Thumm, T. Wahl, and R. Weise. 2009. Der Meeresspiegelanstieg. Ursachen, Tendenzen und Risikobewertung. Die Küste 76: 225–256.Google Scholar
  37. Gough, L., J.B. Grace, and K.T. Taylor. 1994. The relationship between species richness and community biomass: The importance of environmental variables. Oikos 70: 271–279.CrossRefGoogle Scholar
  38. IKÜS. 2009. Abschlussbericht. Aufbau eines integrierten Höhenüberwachungssystems in Küstenregionen durch Kombination höhenrelevanter Sensorik (IKÜS). http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_forst_geo_und_hydrowissenschaften/fachrichtung_geowissenschaften/gi/gg/veroeffentlichungen/BMBF03KIS055-58.pdf. Accessed 09 April 2014.
  39. IPCC. Climate Change. 2007. In The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge, UK: Cambridge University Press.Google Scholar
  40. Kappenberg, J., and I. Grabemann. 2001. Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries. Estuaries 24: 699–706.CrossRefGoogle Scholar
  41. Kerner, M. 2007. Effects of deepening the Elbe Estuary on sediment regime and water quality. Estuarine Coastal and Shelf Science 75: 492–500.CrossRefGoogle Scholar
  42. Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37, L23401. doi: 10.1029/2010GL045489.CrossRefGoogle Scholar
  43. Kötter, F. 1961. Die Pflanzengesellschaften im Tidegebiet der Unterelbe. Archiv für Hydrobiologie. Supplements 26: 106–185.Google Scholar
  44. Leonard, L. 1997. Controls of sediment transport and deposition in an incised mainland marsh basin, southeastern North Carolina. Wetlands 17: 263–274.CrossRefGoogle Scholar
  45. Leonard, L.A., and A.L. Croft. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine Coastal and Shelf Science 69: 325–336.CrossRefGoogle Scholar
  46. Leonard, L., and M.E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography 40: 1474–1484.CrossRefGoogle Scholar
  47. Leonard, L., A.C. Hine, and M.E. Luther. 1995. Surficial sediment transport and deposition processes in a Juncus roemerianus Marsh, West-Central Florida. Journal of Coastal Research 11: 322–336.Google Scholar
  48. Miehlich, G., A. Gröngröft, U. Jähnig, and O. Neuschmidt. 1997. Umweltverträglichkeitsuntersuchung zur Anpassung der Fahrrinne der Unter- und Außenelbe an die Containerschiffahrt: Fachgutachten Sedimente. MATERIALBAND III. ed Planungsgruppe Ökologie und Umwelt Nord, Hamburg, Institute für Bodenkunde der Universität Hamburg. Hamburg: Wasser- und Schiffahrtsamt Hamburg und die Freie und Hansestadt Hamburg, Wirtschaftsbehörde, Amt Strom- und Hafenbau.Google Scholar
  49. Morris, J.T.P.V., C.T. Sundareshwar, B. Kjerfve Nietch, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.CrossRefGoogle Scholar
  50. Neubauer, S.C., and C.B. Craft. 2009. Global change and tidal freshwater wetlands: Scenarios and impacts. In Tidal Freshwater Wetlands, ed. A. Barendregt, D. Whigham, and A.H. Baldwin, 253–266. Leiden: Backhuys Publishers.Google Scholar
  51. Neubauer, S.C., I.C. Anderson, J.A. Constantine, and S.A. Kuehl. 2002. Sediment deposition and accretion in a mid-Atlantic (USA) tidal freshwater marsh. Estuarine Coastal and Shelf Science 54: 713–727.CrossRefGoogle Scholar
  52. Neumeier, U., and C.L. Amos. 2006. The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology 53: 259–277.CrossRefGoogle Scholar
  53. Nielsen, N., and J. Nielsen. 2002. Vertical growth of a young back barrier salt marsh, Skallingen, SW Denmark. Journal of Coastal Research 18: 287–299.Google Scholar
  54. Nolte, S., E.C. Koppenaal, P. Esselink, K.S. Dijkema, M. Schuerch, A.V. Groot, J.P. Bakker, and S. Temmerman. 2013. Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies. Journal of Coastal Conservation 17: 304–325.CrossRefGoogle Scholar
  55. Nyman, J.A., R.D. DeLaune, and W.H. Patrick. 1990. Wetland Soil Formation In The Rapidly Subsiding Mississippi River Deltaic Plain-Mineral And Organic-Matter Relationships. Estuarine Coastal and Shelf Science 31: 57–69.CrossRefGoogle Scholar
  56. Nyman, J.A., R.J. Walters, R.D. DeLaune, and W.H. Patrick. 2006. Marsh vertical accretion via vegetative growth. Estuarine Coastal and Shelf Science 69: 370–380.CrossRefGoogle Scholar
  57. Odum, W. 1988. Comparative ecology of tidal fresh-water and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.CrossRefGoogle Scholar
  58. Osborne, J.W. 2010. Improving your data transformation: applying the Box-Cox transformation. Practical Assessment Research & Evaluation 12: 1–9.Google Scholar
  59. Pasternack, G.B., and G.S. Brush. 1998. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries 21: 407–415.CrossRefGoogle Scholar
  60. Reed, D.J. 2002. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology 48: 233–243.CrossRefGoogle Scholar
  61. Ruhl, C.A., Schoellhamer, D.H., 2004. Spatial and temporal variability of suspended-sediment concentrations in a shallow estuarine environment. San Francisco Estuary and Watershed Science 2. http://escholarship.org/uc/item/1g1756dw. Accessed 03 March 2014.
  62. Schulte-Rentrop, A., and E. Rudolph. 2013. A Sensitivity Study of Storm Surges Under the Conditions of Climate Change in the Elbe Estuary. In Climate Change Management. Climate Change and Disaster Risk Management, ed. W.L. Filho, 295–309. Berlin. Heidelberg: Springer.CrossRefGoogle Scholar
  63. StatSoft Inc. 2009. STATISTICA 9.1. Tulsa, OK: StatSoft.Google Scholar
  64. Temmerman, S., G. Govers, S. Wartel, and P. Meire. 2003. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surface Processes and Landforms 28: 739–755.CrossRefGoogle Scholar
  65. Temmerman, S., G. Gover, S. Wartel, and P. Meire. 2004. Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Marine Geology 212: 1–19.CrossRefGoogle Scholar
  66. Temmerman, S., T.J. Bouma, G. Govers, and D. Lauwaet. 2005. Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height. Estuaries 28: 338–352.CrossRefGoogle Scholar
  67. Underwood, G.J., and D.M. Paterson. 1993. Seasonal-changes in diatom biomass, sediment stability an biogenic stabilization in the Severn estuary. Journal of the Marine Biological Association of the UK 73: 871–887.CrossRefGoogle Scholar
  68. van Proosdij, D., J. Ollerhead, and R.G.D. Davidson-Arnott. 2006a. Seasonal and annual variations in the volumetric sediment balance of a macro-tidal salt marsh. Marine Geology 225: 103–127.CrossRefGoogle Scholar
  69. van Proosdij, D., G.D. Robin, Davidson-Arnott, and J. Ollerhead. 2006b. Controls on spatial patterns of sediment deposition across a macro-tidal salt marsh surface over single tidal cycles. Estuarine Coastal and Shelf Science 69: 64–86.CrossRefGoogle Scholar
  70. van Wijnen, H.J., and J.P. Bakker. 2001. Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise. Estuarine Coastal and Shelf Science 52: 381–390.CrossRefGoogle Scholar
  71. Vink, A., H. Steffen, L. Reinhardt, and G. Kaufmann. 2007. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews 26: 3,249–3,275.Google Scholar
  72. Wahl, T., J. Jensen, T. Frank, and I.D. Haigh. 2011. Improved estimates of mean sea level changes in the German Bight over the last 166 years. Ocean Dynamics 61: 701–715.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • C. Butzeck
    • 1
    Email author
  • A. Eschenbach
    • 2
  • A. Gröngröft
    • 2
  • K. Hansen
    • 2
  • S. Nolte
    • 1
  • K. Jensen
    • 1
  1. 1.Applied Plant EcologyUniversity of HamburgHamburgGermany
  2. 2.Institute of Soil ScienceUniversity of HamburgHamburgGermany

Personalised recommendations