Skip to main content

Advertisement

Log in

Organic Carbon Concentration in the Northern Coastal Baltic Sea between 1975 and 2011

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Boreal coastal seas are reported to be subject of high carbon load from land, yet actual published results on the trends in carbon concentration in coastal waters are scarce. We examined a unique time series of total organic carbon (TOC) concentration at 20 sites along the Finnish coast of the northern Baltic Sea to identify linkages between TOC and other key environmental parameters. Over the last 27 years, TOC concentration has increased in the northernmost Bothnian Bay and Quark sub-basins and in parts of the eutrophic southern Gulf of Finland sub-basin. In the entire coast, the average TOC concentration varied between 3 mg l−1 (at southwestern sites) and 6 mg l−1 (at northern and eastern sites), despite the fact that average TOC concentrations in the adjacent rivers were up to fourfold greater than in the seawater. Coastal and adjacent riverine TOC concentration correlated positively demonstrating the effect of terrestrial input, yet salinity-based mixing analysis proposes effective carbon removal at low salinities. TOC correlated negatively with salinity, which in turn decreased over the study period at 10 coastal sites. Total P increased in the southwestern mosaic-like Archipelago and Åland Sea sub-basin, but decreased in the northern sub-basins. TOC was not shown to be a major contributor to water clarity, but instead Secchi depth was observed to correlate frequently to Fe and chlorophyll a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarnos, H., P. Ylöstalo, and A.V. Vähätalo. 2012. Seasonal phototransformation of dissolved organic matter to ammonium, dissolved inorganic carbon, and labile substrates supporting bacterial biomass across the Baltic Sea. Journal of Geophysical Research 117: 1–14.

    Article  Google Scholar 

  • Algesten, G., L. Brydsten, P. Jonsson, P. Kortelainen, S. Löfgren, L. Rahm, A. Räike, S. Sobek, L. Tranvik, J. Wikner, and M. Jansson. 2006. Organic carbon budget for the Gulf of Bothnia. Journal of Marine Systems 63: 155–161.

    Article  Google Scholar 

  • Alling, V., C. Humborg, C.-M. Mörth, L. Rahm, and F. Pollehne. 2008. Tracing terrestrial organic matter by d34S and d13C signatures in a subarctic estuary. Limnology and Oceanography 53: 2594–2602.

    Article  CAS  Google Scholar 

  • Andersson, A., and Å. Rudehäll. 1993. Proportion of plankton biomass in particulate organic carbon in the northern Baltic Sea. Marine Ecology Progress Series 95: 133–139.

    Article  Google Scholar 

  • Asmala, E., C. Stedmon, and D.N. Thomas. 2012. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries. Estuarine, Coastal and Shelf Science 111: 107–117.

    Article  CAS  Google Scholar 

  • Asmala, E., R. Autio, H. Kaartokallio, L. Pitkänen, C. Stedmon, and D.N. Thomas. 2013. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land-use. Biogeosciences 10: 6969–6986.

    Article  CAS  Google Scholar 

  • Berglund, J., U. Müren, U. Båmstedt, and A. Andersson. 2007. Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnology and Oceanography 52(1): 121–131.

    Article  CAS  Google Scholar 

  • Bianchi, T.S. 2011. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. PNAS 108(49): 19473–19481.

    Article  CAS  Google Scholar 

  • Boyle, E.A., J.M. Edmond, and E.R. Sholkowitz. 1977. The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta 41: 1313–1324.

    Article  CAS  Google Scholar 

  • Chen, C.-T.A., and A.V. Borges. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research II 56: 578–590.

    Article  CAS  Google Scholar 

  • Clark, J.M., S.H. Bottrell, C.D. Evans, D.T. Monteith, R. Bartlett, R.J. Newton, and P.J. Chapman. 2010. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Science of the Total Environment 408(13): 2768–2775.

    Article  CAS  Google Scholar 

  • Conley, D.J., J. Carstensen, J. Aigars, P. Axe, E. Bonsdorff, T. Eremina, B.-M. Haahti, C. Humborg, P. Jonsson, J. Kotta, C. Lännegren, U. Larsson, A. Maximov, M. Rodriguez Medina, E. Lysiak-Pastuszak, N. Remekaite-Nikiene, J. Walve, S. Wilhelms, and L. Zillén. 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science and Technology 45: 6777–6783.

    Article  CAS  Google Scholar 

  • Dore, M.H.I. 2005. Climate change and changes in global precipitation patterns: what do we know? Environment International 31: 1162–1181.

    Article  Google Scholar 

  • EC. 2008. Directive 2008/56/EC of the European Parliament and the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union L 164/19, 25.06.2008.

  • EC. 2010. Commission Decision 477/2010 on criteria and methodological standards on good environmental status of marine waters. Official Journal of the European Union L 232/14, 2.9.2010.

  • Edler, L. 1979. Recommendations for methods for marine biological studies in the Baltic Sea, phytoplankton and chlorophyll. The Baltic Mar. Biol. Publ 5: 1–38.

    Google Scholar 

  • Elmgren, R. 2001. Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30(4–5): 222–231.

    CAS  Google Scholar 

  • Fleming-Lehtinen, V., and M. Laamanen. 2012. Long-term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuarine, Coastal and Shelf Science 102–103: 1–10.

    Article  Google Scholar 

  • Fleming-Lehtinen, V., M. Laamanen, H. Kuosa, H. Haahti, and R. Olsonen. 2008. Long-term development of inorganic nutrients and chlorophyll a in the open northern Baltic Sea. Ambio 37: 86–92.

    Article  CAS  Google Scholar 

  • Fonselius, S., and J. Valderrama. 2003. One hundred years of hydrographic measurements in the Baltic Sea. Journal of Sea Research 49: 229–241.

    Article  Google Scholar 

  • Gelting, J., E. Breitbarth, B. Stolpe, M. Hassellöv, and J. Ingri. 2010. Fractionation of iron species and iron isotopes in the Baltic Sea euphotic zone. Biogeosciences 7: 2489–2508.

    Article  CAS  Google Scholar 

  • Granskog, M.A., H. Kaartokallio, H. Kuosa, D.N. Thomas, and J. Vanio. 2006. Sea ice in the Baltic Sea—a review. Estuarine, Coastal and Shelf Science 70: 145–160.

    Article  Google Scholar 

  • Gustafsson, Ö., A. Widerlund, P.S. Andersson, J. Ingri, P. Roos, and A. Ledin. 2000. Colloid dynamics and transport of major elements through a boreal river—brackish bay mixing zone. Marine Chemistry 71: 1–21.

    Article  CAS  Google Scholar 

  • HELCOM. 2009. Eutrophication in the Baltic Sea. Baltic Sea Environment Proceedings 115B: 148.

    Google Scholar 

  • HELCOM. 2010. Ecosystem health of the Baltic Sea 2003–2007: HELCOM Initial Holistic Assessment. Baltic Sea Environment Proceedings 122: 63.

    Google Scholar 

  • HELCOM. 2011. Fifth Baltic Sea pollution load compilation (PLC-5). Baltic Sea Environment Proceedings 128: 217.

    Google Scholar 

  • Hirsch, R.M., J.R. Slack, and R.A. Smith. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107–121.

    Article  Google Scholar 

  • Hirsch, R.M., R.B. Alexander, and R.A. Smith. 1991. Selection of methods for the detection and estimation of trends in water quality. Water Resources Research 27: 803–813.

    Article  Google Scholar 

  • Hoikkala, L. 2012. Dynamics of dissolved organic matter and its bioavailability to heterotrophic bacteria in the Gulf of Finland, northern Baltic Sea. PhD thesis, Faculty of Biological and Environmental Sciences, University of Helsinki, 62pp.

  • Hoikkala, L., T. Lahtinen, M. Perttilä, and R. Lignell. 2012. Seasonal dynamics of dissolved organic matter on a coastal salinity gradient in the northern Baltic Sea. Continental Shelf Research 45: 1–14.

    Article  Google Scholar 

  • Hojerslev, N.K. 1988. Natural occurrences and optical effects of Gelbstoff. In Copenhagen University Report, 1–30.

  • Hulatt, C.J., H. Kaartokallio, C.A. Stedmon, R. Autio, E. Asmala, E. Sonninen, M. Oinonen, and D.N. Thomas. 2014. Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change. Aquatic Sciences. doi:10.1007/s00027-014-0342-y.

    Google Scholar 

  • Hyytiäinen, K., and M.E. Ollikainen. 2012. Taloudellinen näkökulma Itämeren suojeluun (in Finnish with English abstract). Ympäristöministeriön raportteja 22/2012, 134pp.

  • Kangas, P., S. Bäck, and P. Kauppila. 2003. Suggestions for a typology of coastal waters for the Finnish Coast according to the European Union Water Framework Directive (2000/60/EC) (in Finnish with an English summary). Mimeograph Series of Finnish Environment Institute 284: 1–51.

    Google Scholar 

  • Kauppila, P., and S. Bäck. 2001. The state of Finnish coastal waters in the 1990s. The Finnish Environment - Report Series of the Finnish Environment Institute 472: 134.

    Google Scholar 

  • Koroleff, F. 1983. Simultaneous oxidation of nitrogen and phosphorus compounds by persulfate. In Methods of seawater analysis, 2nd ed, ed. K. Grasshoff, M. Eberhardt, and K. KremLing. Weinheimer, FRG: Verlag Chemie.

    Google Scholar 

  • Kortelainen, P., J. Mannio, and V. Pennanen. 1986. Characteristics of the allochthonous organic matter in Finnish forest lakes and reservoirs. Finland: Publications of the Water Research Institute, National Board of Waters. 65.

    Google Scholar 

  • Kortelainen, P., H. Pajunen, M. Rantakari, and M. Saarnisto. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Global Change Biology 10: 1648–1653.

    Article  Google Scholar 

  • Kortelainen, P., T. Mattson, L. Finér, M. Ahtiainen, S. Saukkonen, and T. Sallantaus. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences 68: 453–468.

    Article  CAS  Google Scholar 

  • Kritzberg, E.S., and S.M. Ekström. 2012. Increasing iron concentrations in surface waters—a factor behind brownification? Biogeosciences 9: 1465–1478.

    Article  CAS  Google Scholar 

  • Kronsell, J., and P. Andersson. 2012. Total and regional runoff to the Baltic Sea. HELCOM Baltic Sea Environment Fact Sheet 2012. Online 18th Sept 2013. http://www.helcom.fi/environment2/ifs/en_GB/cover/.

  • Kulinski, K., and J. Pempkowiak. 2011. The carbon budget of the Baltic Sea. Biogeosciences 8: 3219–3230.

    Article  CAS  Google Scholar 

  • Kuusisto, M., J. Koponen, and J. Sarkkula. 1998. Modelled phytoplankton dynamics in the Gulf of Finland. Environmental Modelling & Software 13: 461–470.

    Article  Google Scholar 

  • Lalonde, K., A. Mucci, A. Ouellet, and Y. Gélinas. 2012. Preservation of organic matter in sediments promoted by iron. Nature 483: 198–200.

    Article  CAS  Google Scholar 

  • Lehtoranta, J., P. Ekholm, and H. Pitkänen. 2008. Eutrophication-driven sediment microbial processes can explain the regional variation in phosphorus concentrations between the Baltic Sea sub-basins. Journal of Marine Systems 74: 495–504.

    Article  Google Scholar 

  • Lepistö, A., P. Kortelainen, and T. Mattson. 2008. Increased organic C and N leaching in a northern boreal river basin in Finland. Global Biochemical Cycles 22: 1–10.

    Article  Google Scholar 

  • Lepistö, L., M. Futter, and P. Kortelainen. 2014. Almost 50years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. Global Change Biology. doi:10.1111/gcb.12491.

    Google Scholar 

  • Leppäranta, M., and K. Myrberg. 2009. Physical oceanography of the Baltic Sea. Chicester, UK: Springer. 378pp.

    Book  Google Scholar 

  • Lignell, R. 1990. Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea. Marine Ecology Progress Series 68: 85–99.

    Article  Google Scholar 

  • Lignell, R., A.S. Heiskanen, H. Kuosa, K. Gundersen, P. Kuuppo-Leinikki, R. Pajuniemi, and A. Uitto. 1993. Fate of a phytoplankton spring bloom—sedimentation and carbon flow in the planktonic food web in the northern Baltic. Marine Ecology-Progress Series 94: 239–252.

    Article  Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Lundberg, C., B.M. Jakobsson, and E. Bonsdorff. 2009. The spreading of eutrophication in the eastern coast of the Gulf of Bothnia, northern Baltic Sea—an analysis in time and space. Estuarine, Coastal and Shelf Science 82: 152–160.

    Article  CAS  Google Scholar 

  • Maranger, R., and M.J. Pullin. 2003. Elemental complexation by dissolved organic matter in lakes: implications for Fe speciation and the bioavailability of Fe and P. In Aquatic ecosystems: interactivity of dissolved organic matter, ed. S.E.G. Finlay and R.L. Sinsabaugh. San Diego: Academic.

    Google Scholar 

  • Mattson, T., P. Kortelainen, and A. Räike. 2005. Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry 76: 373–394.

    Article  Google Scholar 

  • Meier, M. 2006. Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Climate Dynamics 27: 39–68.

    Article  Google Scholar 

  • Menden-Deuer, S., and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnology and Oceanography 45(3): 569–579.

    Article  CAS  Google Scholar 

  • Mopper, K., Z. Xiangliang, R.J. Kieber, D.J. Kieber, R.J. Sikorski, and R.D. Jones. 1991. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62.

    Article  CAS  Google Scholar 

  • Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Neal, C., S. Lofts, C.D. Evans, B. Reynolds, E. Tipping, and M. Neal. 2008. Increasing iron concentrations in UK upland waters. Aq Cheochem 14: 263–288.

    CAS  Google Scholar 

  • Nixon, S.W. 1995. Coastal marine eutrophication: a definition, social causes and future concern. Ophelia 41: 199–219.

    Article  Google Scholar 

  • Osburn, C.L., D.P. Morris, K.A. Thorn, and R.E. Moeller. 2001. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54: 251–278.

    Article  CAS  Google Scholar 

  • Pärn, J., and Ü. Mander. 2011. Increased organic carbon concentrations in Estonian rivers in the period 1992–2007 as affected by deepening droughts. Biogeochemistry 108: 351–358.

    Article  Google Scholar 

  • Pettersson, C., B. Allard, and H. Borén. 1997. River discharge of humic substances and humic-bound metals to the Gulf of Bothnia. Estuarine, Coastal and Shelf Science 44: 533–541.

    Article  CAS  Google Scholar 

  • Pitkänen, H., J. Lehtoranta, and A. Räike. 2001. Internal nutrient fluxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea. Ambio 30: 195–201.

    Google Scholar 

  • Pocklington, R. 1986. The Gulf of St. Lawrence and the Baltic Sea: two different organic systems (in German, with English abstract). Deutsche Hydrographische Zeitschrift 39: 65–75.

    Article  Google Scholar 

  • Raateoja, M., J. Seppälä, H. Kuosa, and K. Myrberg. 2005. Recent changes in trophic state of the Baltic Sea along SW coast of Finland. Ambio 34: 188–191.

    Google Scholar 

  • Rabalais, N.N., R.J. Díaz, L.A. Levin, R.E. Turner, D. Gilvert, and J. Zhang. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7: 585–619.

    Article  CAS  Google Scholar 

  • Räike, A., D.N. Thomas, T. Mattson, and P. Kortelainen. 2012. 36 year long trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea. Science of the Total Environment 435–436: 188–201.

    Article  Google Scholar 

  • Riedel, T., D. Zak, H. Biester, and T. Dittmar. 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces. PNAS 110: 10101–10105.

    Article  CAS  Google Scholar 

  • Sandberg, J. 2007. Cross-ecosystem analyses of pelagic food web structure and processes in the Baltic Sea. Ecological Modelling 201: 243–261.

    Article  Google Scholar 

  • Sandberg, J., A. Andersson, S. Johansson, and J. Wikner. 2004. Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Marine Ecology Progress Series 268: 13–29.

    Article  Google Scholar 

  • Sarkkola, S., H. Koivusalo, A. Laurén, P. Kortelainen, T. Mattson, M. Palviainen, S. Piirainen, M. Starr, and L. Finér. 2009. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Science of the Total Environment 408(1): 92–101.

    Article  CAS  Google Scholar 

  • Sarkkola, S., M. Nieminen, H. Koivusalo, A. Laurén, P. Kortelainen, T. Mattson, M. Palviainen, S. Piirainen, M. Starr, and L. Finér. 2013. Iron concentrations are increasing in surface waters from forested headwater catchments in eastern Finland. Science of the Total Environment 463–464: 683–689.

    Article  Google Scholar 

  • Shapiro, J. 1966. On the measurement of ferrous iron in natural waters. Limnology and Oceanography 11(2): 293–298.

    Article  CAS  Google Scholar 

  • Skoog, A., M. Wedborg, and E. Fogelqvist. 2011. Decoupling of total organic carbon concentrations and humic substance fluorescence in an extended temperate estuary. Marine Chemistry 124: 68–77.

    Article  CAS  Google Scholar 

  • Sokal, R.R., and F.J. Rohlf. 1981. Biometry: the principles and practice of statistics in biological research, 2nd ed. San Fransisco: Freeman.

    Google Scholar 

  • Tamminen, T., and T. Andersen. 2007. Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Marine Ecology Progress Series 340: 121–138.

    Article  CAS  Google Scholar 

  • Uitto, A., A.S. Heiskanen, R. Lignell, R. Autio, and R. Pajuniemi. 1997. Summer dynamics of the coastal planktonic food web in the northern Baltic Sea. Marine Ecology Progress Series 151: 27–41.

    Article  CAS  Google Scholar 

  • van Dongen, B., Z. Zencak, and Ö. Gustafsson. 2008. Differential transport and degradation of bulk organic carbon and specific terrestrial biomarkers in the surface waters of a sub-arctic brackish bay mixing zone. Marine Chemistry 112: 203–214.

    Article  Google Scholar 

  • von Wachenfeldt, E., S. Sobek, D. Bastviken, and L. Tranvik. 2008. Linking allochthonous dissolved organic matter and boreal lake sediment carbon sequestration: the role of light-mediated flocculation. Limnology and Oceanography 53(6): 2416–2426.

    Article  Google Scholar 

  • Weyhenmeyer, G.A., Y.T. Prairie, and L.J. Tranvik. 2014. Browing of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PloS One 9(2): e88104. doi:10.1371/journal.pone.0088104.

    Article  Google Scholar 

  • Wijnbladh, E., K. Aquilonius, and S. Floderus. 2008. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SKB Rapport R-08-03. Stockholm. 504p.

  • Wikner, J., and A. Anderson. 2012. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Global Change Biology 18: 2509–2519.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Academy of Finland FiDiPro-project (Biogeochemistry of the Baltic Sea in a Changing Climate: From Catchment to Open Sea) for supporting this work. We thank Harri Kuosa, Hermanni Kaartokallio and the anonymous reviewers for their constructive comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivi Fleming-Lehtinen.

Additional information

Communicated by Dennis Swaney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleming-Lehtinen, V., Räike, A., Kortelainen, P. et al. Organic Carbon Concentration in the Northern Coastal Baltic Sea between 1975 and 2011. Estuaries and Coasts 38, 466–481 (2015). https://doi.org/10.1007/s12237-014-9829-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9829-y

Keywords

Navigation