Estuaries and Coasts

, Volume 38, Issue 4, pp 1126–1133 | Cite as

Contrasting Sensitivity of Marine Biota to UV-B Radiation Between Southern and Northern Hemispheres

  • Susana AgustíEmail author
  • Moira Llabrés
  • Beatriz Carreja
  • Miriam Fernández
  • Carlos M. Duarte


The asymmetries between hemispheres in stratospheric ozone concentration and atmospheric aerosols, leading to differences in incident ultraviolet B (UV-B) radiation, were examined in order to resolve the differential forcing of adaptation and selection of marine organisms under elevated UV-B radiation. This analysis was based on a meta-analysis including 2,060 experimental assessments of responses of marine organisms from the Northern and Southern Hemispheres to UV-B. Stratospheric ozone concentration in spring and summer decreased by 11.0 % in the Southern and 2.7 % in the Northern between 1970 and 2012, indicating higher UV-B incidence on the Southern Hemisphere. The ratio of studies on UV-B radiation impacts performed in the Southern against the Northern Hemisphere was 0.34 indicating higher research effort in the Northern Hemisphere. Responses of marine biota to UV-B indicated significantly more resistance of marine organisms tested from the Southern Hemisphere (P < 0.01) to UV-B radiation. Marine plants (angiosperm, macroalgae and microalgae) showed no significant differences in UV-B sensitivity between hemispheres, but the family Ulvaceae, showed significantly more resistance to UV-B for organisms tested from the Southern Hemisphere (P < 0.005). Echinodermata tested from the Southern Hemisphere were more resistant to UV-B (P < 0.005), as well as early stages of marine organisms (P < 0.001). Responses at the molecular and cellular level and demographic levels showed lower UV-B effects in the organisms tested from the Southern Hemisphere. The results obtained suggest that marine organisms from the Southern Hemisphere tend to be more resistant to UV-B radiation than those in the Northern Hemisphere.


North South UV-B Marine biota Ozone Global change 



This research is a contribution to the LINCGlobal programme (CSIC-PUC) and was partially funded by the Malaspina-2010 project of the CONSOLIDER programme (ref. CSD2008-00077) and the project Stress-X (ref. CTM2012-32603) of the Spanish Ministry of Economy and Competitiveness.


  1. Bancroft, B., N.J. Baker, and A.R. Blaustein. 2007. Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecology Letters 10: 332–345.CrossRefGoogle Scholar
  2. Blumthaler, M., and A.R. Webb. 2003. UVR climatology. In UV effects in aquatic organisms and ecosystems, ed. E.R. Helbling and H. Zagarese, 21–58. Cambridge: The Royal Society of Chemistry.CrossRefGoogle Scholar
  3. Chown, S.L., B.J. Sinclair, H.P. Leinaas, and K.J. Gaston. 2004. Hemispheric asymmetries in biodiversity–a serious matter for ecology. PLoS Biology 2: e406.CrossRefGoogle Scholar
  4. Eguchi, N., and T. Yokota. 2008. Investigation of clear-sky occurrence rate estimated from CALIOP and MODIS observations. Geophysical Research Letters 35, L23816.CrossRefGoogle Scholar
  5. Gaston, K.J. 2000. Global patterns in biodiversity. Nature 405: 220–227.Google Scholar
  6. Häder, D.P. 2001. Adaptation to UV stress in algae. In Algal adaptation to environmental stresses, ed. L.C. Rai and J.P. Gaur, 173–202. Berlin: Springer.CrossRefGoogle Scholar
  7. Häder, D.P., M. Lebert, L. Schuster, L. Del Ciampo, E.W. Helbling, and R. McKenzie. 2007. ELDONET–a decade of monitoring solar radiation on five continents. Photochemistry and Photobiology 83: 1348–1357.CrossRefGoogle Scholar
  8. Häder, D.P., E.W. Helbling, C.E. Williamson, and R.C. Worrest. 2011. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochemical and Photobiological Sciences 10: 242–260.CrossRefGoogle Scholar
  9. Helbling, E.W., C.F. Menchi, and V.E. Villafañe. 2002. Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina. Photochemical and Photobiological Sciences 1: 820–825.CrossRefGoogle Scholar
  10. Herman, J.R. 2010. Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. Journal of Geophysical Research 115, D04203.Google Scholar
  11. Herman, J.R., P.K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier. 1997. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. Journal of Geophysical Research 102: 16911.CrossRefGoogle Scholar
  12. Hurrell, J.W. 1995. Decadal trends in the north Atlantic oscillation: regional temperatures and precipitation. Science 269: 676–679.CrossRefGoogle Scholar
  13. Iribarne, O and P. Martinetto. 2014. A view from the South on the changing coastal and estuarine environment. Estuaries and Coasts, This IssueGoogle Scholar
  14. Liepert, B.G., and G.J. Kukla. 1997. Decline in global solar radiation with increased horizontal visibility in Germany between 1964 and 1990. Journal of Climate 10: 2391–2401.CrossRefGoogle Scholar
  15. Llabrés, M., S. Agustí, M. Fernández, A. Canepa, F. Maurin, F. Vidal, and C.M. Duarte. 2013. Impact of elevated UVB radiation on marine biota: a meta-analysis. Global Ecology and Biogeography 22: 131–144.CrossRefGoogle Scholar
  16. Mangel, M., J. Brodziak, and G. DiNardo. 2010. Reproductive ecology and scientific inference of steepness: a fundamental metric of population dynamics and strategic fisheries management. Fish and Fisheries 11: 89–104.CrossRefGoogle Scholar
  17. Manney, G.L., M.L. Santee, M. Rex, N.J. Livesey, M.C. Pitts, P. Veefkind, E.R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L.R. Poole, M.R. Scholeberl, D.P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyrö, E. Larsen, P.F. Levelt, A. Makshtass, C.T. McElroy, H. Nakajima, M.C. Parrondo, D.W. von der Tarasick Gathen, K.A. Waller, and N.S. Zinoviev. 2011. Unprecedented arctic ozone loss in 2011. Nature 478: 469–475.CrossRefGoogle Scholar
  18. McKenzie, R. 1999. Increased summertime UV radiation in New Zealand in response to ozone loss. Science 285: 1709–1711.CrossRefGoogle Scholar
  19. McKenzie, R.L., P.J. Aucamp, A.F. Bais, L.O. Björn, M. Ilyas, and S. Madronich. 2011a. Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences 10: 182–198.CrossRefGoogle Scholar
  20. Mckenzie, R.L., P.J. Aucamp, A.F. Bais, M. Ilyas, and S. Madronich. 2011b. Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences 10: 182–198.CrossRefGoogle Scholar
  21. Molina, F.S., and M. Rowland. 1974. Stratospheric sink for chlorofluoromethanes: chlorine atomic-catalysed destruction of ozone. Nature 249: 810–812.CrossRefGoogle Scholar
  22. Munakata, N., S. Kazadzis, D. Bolseé, N. Schucht, T. Koskela, A. Karpetchko, C. Meleti, C. Casiccia, M.B. Rosa, T. Saida, C. Nishigori, K. Ogata, K. Imafuku, C.M. Liu, S. Lestari, M. Kanoko, S. Cornain, K. Mulyadi, and K. Hieda. 2009. Variations and trends of biologically effective doses of solar ultraviolet radiation in Asia, Europe and South America from 1999 to 2007. Photochemical and Photobiological Sciences 8: 1117–1124.CrossRefGoogle Scholar
  23. NASA. 2009. Ozone hole watch, annual record since 1979.
  24. Paul, N.D., and D. Gwynn-Jones. 2003. Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology & Evolution 18: 48–55.CrossRefGoogle Scholar
  25. Pichrtová, M., D. Remias, L.A. Lewis, and A. Holzinger. 2013. Changes in phenolic compounds and cellular ultrastructure of arctic and antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. Microbial Ecology 65: 68–83.CrossRefGoogle Scholar
  26. Ray, G.C. 1991. Coastal-zone biodiversity patterns. BioScience 41: 490–498.CrossRefGoogle Scholar
  27. Regoli, F., M. Nigro, M. Chiantore, S. Gorby, and G. Winston. 2000. Total oxidant scavenging capacity of Antarctic, Arctic, and Mediterranean scallops. The Italian Journal of Zoology 67: 85–94.CrossRefGoogle Scholar
  28. Rothschild, L.J. 1999. The influence of UV radiation on protistan evolution. The Journal of Eukaryotic Microbiology 46: 548–555.CrossRefGoogle Scholar
  29. Rozema, J., J. van de Staaij, L.O. Björn, and M. Caldwell. 1997. UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology & Evolution 12: 22–28.CrossRefGoogle Scholar
  30. Rozema, J., L.O. Björn, J.F. Bornman, A. Gaberšcik, D.P. Häder, T. Trošt, M. Germ, M. Klische, A. Groniger, P.P. Sinha, M. Lebert, Y.Y. He, R. Buffoni-Hall, N.V.J. de Bakker, J. van de Staaij, and B.B. Meijkamp. 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology Biology 66: 2–12.CrossRefGoogle Scholar
  31. Rozema, J., P. Boehen, and P. Blokker. 2005. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environmental Pollution 137: 428–442.CrossRefGoogle Scholar
  32. Seckmeyer, G., M. Glandorf, C. Wichers, R. McKenzie, D. Henriques, F. Carvalho, A. Webb, A. Siani, A. Bais, B. Kjeldstad, C. Brogniez, P. Werle, T. Koskela, K. Lakkala, J. Gröbner, H. Slaper, P. denOuterl, and U. Feisterm. 2008. Europe’s darker atmosphere in the UV-B. Photochemical and Photobiological Sciences 7: 925–930.CrossRefGoogle Scholar
  33. Setlow, R.B. 1974. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proceedings of the National Academy of Sciences of the United States of America) 71: 3363–3366.CrossRefGoogle Scholar
  34. Stanhill, G., and S. Cohen. 2001. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology 107: 255–278.CrossRefGoogle Scholar
  35. Stenseth, N.C., G. Ottersen, J.W. Hurrell, A. Mysterud, M. Lima, K.S. Chan, N.G. Yoccoz, and B. Adlandsvik. 2003. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proceedings of the Royal Society of London Series B: Biological Sciences 270: 2087–2096.CrossRefGoogle Scholar
  36. Tittensor, D.P., C. Mora, W. Jetz, H.K. Lotze, D. Ricard, E.V. Berghe, and B. Worm. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466: 1098–1101.CrossRefGoogle Scholar
  37. Weatherhead, E.C., and S.B. Andersen. 2006. The search for signs of recovery of the ozone layer. Nature 441: 39–45.CrossRefGoogle Scholar
  38. Willig, M.R., D.M. Kaufman, and D.R. Stevens. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273–309.CrossRefGoogle Scholar
  39. World Meteorological Organization (WMO). 2007. Scientific assessment of ozone depletion: 2006, Global Ozone Res. and Monit. Proj. Rep. 50, Geneva.Google Scholar
  40. Wulff, A., K. Iken, M.L. Quartino, A. Al-Handal, C. Wiencke, and M.N. Clayton. 2009. Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Botanica Marina 52: 491–507.CrossRefGoogle Scholar
  41. Zacher, K., R. Rautenberger, D. Hanelt, A. Wulff, and C. Wiencke. 2009. The abiotic environment of polar marine benthic algae. Botanica Marina 52: 483–490.CrossRefGoogle Scholar
  42. Zhang, Y., J.M. Wallace, and D.S. Battisti. 1997. ENSO-like interdecadal variability: 1900–93. Journal of Climate 10: 1004–1020.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Susana Agustí
    • 1
    • 2
    • 3
    Email author
  • Moira Llabrés
    • 1
    • 2
  • Beatriz Carreja
    • 1
    • 2
  • Miriam Fernández
    • 1
    • 4
  • Carlos M. Duarte
    • 1
    • 2
    • 3
    • 5
  1. 1.LINCGlobal, CSIC-PUC, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.IMEDEA, CSIC-UIBMallorcaSpain
  3. 3.The UWA Oceans Institute and School of Plant BiologyUniversity of Western AustraliaCrawleyAustralia
  4. 4.ECIM, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  5. 5.Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations