Estuaries and Coasts

, Volume 37, Issue 2, pp 243–258 | Cite as

Evolving Paradigms and Challenges in Estuarine and Coastal Eutrophication Dynamics in a Culturally and Climatically Stressed World

  • Hans W. Paerl
  • Nathan S. Hall
  • Benjamin L. Peierls
  • Karen L. Rossignol
The H.T. Odum Synthesis Essay

Abstract

Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient inputs and resultant eutrophication, including symptomatic harmful algal blooms, hypoxia, finfish and shellfish kills, and loss of higher plant and animal habitat. In addressing nutrient input reductions to stem and reverse eutrophication, phosphorus (P) has received priority traditionally in upstream freshwater regions, while controlling nitrogen (N) inputs has been the focus of management strategies in estuarine and coastal waters. However, freshwater, brackish, and full-salinity components of this continuum are connected structurally and functionally. Intensification of human activities has caused imbalances in N and P loading, altering nutrient limitation characteristics and complicating successful eutrophication control along the continuum. Several recent examples indicate the need for dual N and P input constraints as the only nutrient management option effective for long-term eutrophication control. Climatic changes increase variability in freshwater discharge with more severe storms and intense droughts and interact closely with nutrient inputs to modulate the magnitude and relative proportions of N and P loading. The effects of these interactions on phytoplankton production and composition were examined in two neighboring North Carolina lagoonal estuaries, the New River and Neuse River Estuaries, which are experiencing concurrent eutrophication and climatically driven hydrologic variability. Efforts aimed at stemming estuarine and coastal eutrophication in these and other similarly impacted estuarine systems should focus on establishing N and P input thresholds that take into account effects of hydrologic variability, so that eutrophication and harmful algal blooms can be controlled over a range of current and predicted climate change scenarios.

Keywords

Nitrogen Phosphorus Hydrodynamics Phytoplankton Coastal eutrophication Nutrient limitation Climate change 

References

  1. Ache, B.W., K.M. Crossett, P.A. Pacheco, J.E. Adkins, and P.C. Wiley. 2013. “The coast” is complicated: a model to consistently describe the nation’s coastal population. Estuaries and Coasts 1–5. doi:10.1007/s12237-013-9629-9
  2. Ahern, K.S., C.R. Ahern, and J.W. Udy. 2007. Nutrient additions generate prolific growth of Lyngbya majuscula (cyanobacteria) in field and bioassay experiments. Harmful Algae 6: 134–151.CrossRefGoogle Scholar
  3. Altman, J.C., and H.W. Paerl. 2012. Composition of inorganic and organic nutrient sources influences phytoplankton community structure in the New River Estuary, North Carolina. Aquatic Ecology 42: 269–282.CrossRefGoogle Scholar
  4. Anderson, I.C., M.J. Brush, M.F. Piehler, C.A. Currin, J.W. Stanhope, A.R. Smyth, J.D. Maxey, and M.L. Whitehead. 2013. Impacts of climate-related drivers on the benthic nutrient filter in a shallow photic estuary. Estuaries and Coasts. doi:10.1007/s12237-013-9665-5.Google Scholar
  5. Boesch, D.F., E. Burreson, W. Dennison, E. Houde, M. Kemp, V. Kennedy, R. Newell, K. Paynter, R. Orth, and W. Ulanowicz. 2001. Factors in the decline of coastal ecosystems. Science 293: 629–638.CrossRefGoogle Scholar
  6. Borsuk, M.E., C.A. Stow, and K.H. Reckhow. 2004. Confounding effect of flow on estuarine response to nitrogen loading. Journal of Environmental Engineering 130: 605–614.CrossRefGoogle Scholar
  7. Boynton, W.R., and W.M. Kemp. 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Marine Ecology Progress Series 23: 45–55.CrossRefGoogle Scholar
  8. Bricker, S.B., C.G. Clement, D.E. Pirhalla, S.P. Orlando, and D.R.G. Farrow. 1999. National estuarine eutrophication assessment: effects of nutrient enrichment in the Nation’s estuaries. NOAA, National Ocean Service, Special Projects Office, and the National Centers for Coastal Ocean Science, Silver Spring, MD.Google Scholar
  9. Brown, C.A. 1942. “Justus von Liebig—Man and teacher.” and “Liebig and the Law of the Minimum”. In Liebig and After Liebig: a century of progress in agricultural chemistry. American Association for the Advancement of Science. The Science Press Printing Co., Lancaster, PA.Google Scholar
  10. Capone, D.G., M. Mulholland, and E.J. Carpenter (eds.). 2008. Nitrogen in the marine environment, vol. 2. Orlando: Academic.Google Scholar
  11. Chai, C., Z. Yu, Z. Shen, X. Song, X. Cao, and Y. Yao. 2009. Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Science of the Total Environment 407: 4687–4695.CrossRefGoogle Scholar
  12. Chen, C.T.A., and F. Millero. 1986. Precise thermodynamic properties for natural waters covering only the limnological range. Limnology and Oceanography 31: 657–662.CrossRefGoogle Scholar
  13. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  14. Conley, D.J., H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, and G.E. Likens. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.CrossRefGoogle Scholar
  15. David, M.B., L.E. Drinkwater, and G.F. McIsaac. 2010. Sources of nitrate yields in the Mississippi River Basin. Journal of Environmental Quality 39: 1657–1667.CrossRefGoogle Scholar
  16. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle Scholar
  17. Dortch, Q., and T.E. Whitledge. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research 12: 1293–1309.CrossRefGoogle Scholar
  18. Elliott, J.A., S.J. Thackeray, C. Huntingford, and R.G. Jones. 2005. Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshwater Biology 50: 1404–1411.CrossRefGoogle Scholar
  19. Elmgren, R., and U. Larsson. 2001. Nitrogen and the Baltic Sea: managing nitrogen in relation to phosphorus. The Scientific World, Special Edition (S2): 371–377. Balkema Publishers.Google Scholar
  20. Elser, J.J., M.E.S. Bracken, E.E. Cleland, D.S. Gruner, W.S. Harpole, H. Hillebrand, J.T. Bgai, E.W. Seabloom, J.B. Shurin, and J.E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1124–1134.CrossRefGoogle Scholar
  21. Emanuel, K., R. Sundararajan, and J. Williams. 2008. Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bulletin of the American Meteorological Society 89: 347–367.CrossRefGoogle Scholar
  22. Ensign, S.H., J.N. Halls, and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina Estuaries. Computers and Geosciences 30: 501–511.CrossRefGoogle Scholar
  23. Feuchtmayr, H., R. Moran, K. Hatton, L. Conner, T. Heyes, B. Moss, I. Harvey, and D. Atkinson. 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology 46: 713–723.CrossRefGoogle Scholar
  24. Finlay, K., A. Patoine, D.B. Donald, M. Bogard, and P.R. Leavitt. 2010. Experimental evidence that pollution with urea can degrade water quality in phosphorus-rich lakes of the northern Great Plains. Limnology and Oceanography 55: 1213–1230.CrossRefGoogle Scholar
  25. Fisher, T.R., A.B. Gustafson, K. Sellner, R. Lacuture, L.W. Haas, R. Magnien, R. Karr, and B. Michael. 1999. Spatial and temporal variation in resource limitation in Chesapeake Bay. Marine Biology 133: 763–778.CrossRefGoogle Scholar
  26. Galloway, J.N., and E.B. Cowling. 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31: 64–71.CrossRefGoogle Scholar
  27. Goldman, C.R. 1981. Lake Tahoe: two decades of change in a nitrogen deficient oligotrophic lake. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 21: 45–70.Google Scholar
  28. Granéli, E.K., U. Wallström, U. Larsson, and R. Elmgren. 1999. Nutrient limitation of the Baltic Sea area. Ambio 19: 142–151.Google Scholar
  29. Hall, N.S., and H.W. Paerl. 2011. Vertical migration patterns of phytoflagellates in relation to light and nutrient availability in a shallow, microtidal estuary. Marine Ecology Progress Series 425: 1–19.CrossRefGoogle Scholar
  30. Hall, N.S., R.W. Litaker, E. Fensin, J.E. Adolf, A.R. Place, and H.W. Paerl. 2008. Environmental factors contributing to the development and demise of a toxic dinoflagellate (Karlodinium veneficum) bloom in a shallow, eutrophic, lagoonal estuary. Estuaries and Coasts 31: 402–418.CrossRefGoogle Scholar
  31. Hall, N.S., H.W. Paerl, B.L. Peierls, A.C. Whipple, and K.L. Rossignol. 2013. Effects of climatic variability on phytoplankton biomass and community structure in the eutrophic, microtidal, New River Estuary, North Carolina, USA. Estuarine and Coastal Shelf Science 117: 70–82.CrossRefGoogle Scholar
  32. Havens, K.E., T. Fukushima, P. Xie, T. Iwakuma, R.T. James, N. Takamura, T. Hanazato, and T. Yamamoto. 2001. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environmental Pollution 111: 262–272.CrossRefGoogle Scholar
  33. Howarth, R.W. 1998. An assessment of human influences on inputs of nitrogen to the estuaries and continental shelves of the North Atlantic Ocean. Nutrient Cycling in Agroecosystems 52: 213–223.CrossRefGoogle Scholar
  34. Howarth, R.W., R. Marino, J. Lane, and J.J. Cole. 1988. Nitrogen fixation rates in freshwater, estuarine, and marine ecosystems. Limnology and Oceanography 33: 669–687.CrossRefGoogle Scholar
  35. Howarth, R., D. Anderson, J. Cloem, C. Elfring, C. Hopkinson, B. Lapointe, T. Malone, N. Marcus, K. McGlathery, A. Sharpley, and D. Walker. 2000. Nutrient pollution of coastal rivers, bays, and seas. Vol. 7 of issues in ecology. Washington, D.C: Ecological Society of America.Google Scholar
  36. Hudnell, K.H. (ed.). 2008. Cyanobacterial harmful algal blooms. London: Springer. 950p.Google Scholar
  37. Humborg, C., L. Rahm, D.J. Conley, T. Tamminen, and B. von Bodungen. 2007. Silicon in the Baltic Sea: long-term Si decrease in the Baltic Sea—a conceivable ecological risk? Journal of Marine Systems 73: 221–222.CrossRefGoogle Scholar
  38. Jeppesen, E., B. Moss, H. Bennion, L. Carvalho, L. De Meester, H. Feuchtmayr, N. Friberg, M.O. Gessner, M. Hefting, T.L. Lauridsen, et al. 2010. Interaction of climate change and eutrophication. In Climate change impacts on freshwater ecosystems, ed. M. Kernan, R.W. Battarbee, and B. Moss, 119–151. Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
  39. Jōhnk, K.D., J. Huisman, J. Sharples, B. Sommeijer, P.M. Visser, and J.M. Stroom. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495–512.CrossRefGoogle Scholar
  40. Justić, D., N.N. Rabalais, R.E. Turner, and Q. Dortch. 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science 40: 339–356.CrossRefGoogle Scholar
  41. Kosten, S., V. Huszar, E. Bécares, L. Costa, E. van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lurling, T. Noges, S. Romo, and M. Scheffer. 2012. Warmer climate boosts cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.CrossRefGoogle Scholar
  42. Kraberg, A., N. Wasmund, J. Vanaverbeke, D. Schiedek, K.H. Wiltshire, and N. Mieszkowska. 2011. Regime shifts in the marine environment: scientific basis and political context. Marine Pollution Bulletin 62: 7–20.CrossRefGoogle Scholar
  43. Kratzer, C.R., and P.L. Brezonik. 1981. A Carlson-type trophic state index for nitrogen in Florida lakes. Journal of the American Water Resources Association 17: 713–715.CrossRefGoogle Scholar
  44. Kuffner, I.B., and V.J. Paul. 2001. Effects of nitrate, phosphate and iron on the growth of macroalgae and benthic cyanobacteria from Cocos Lagoon, Guam. Marine Ecology Progress Series 222: 63–72.CrossRefGoogle Scholar
  45. Laurent, A., K. Fennel, J. Hu, and R. Hetland. 2012. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes. Biogeosciences Discussion 9: 5625–5657.CrossRefGoogle Scholar
  46. Lewis Jr., W.M., and W.A. Wurtsbaugh. 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Internationale Revue gesamten Hydrobiologie 93: 446–465.CrossRefGoogle Scholar
  47. Lewis, W.M., W.A. Wurtsbaugh, and H.W. Paerl. 2011. Rationale for control of anthropogenic nitrogen and phosphorus in inland waters. Environmental Science & Technology 45: 10030–10035.CrossRefGoogle Scholar
  48. Likens, G.E. (Ed.). 1972. Nutrients and eutrophication. American Society of Limnology and Oceanography, Special Symposium 1. 328 p.Google Scholar
  49. Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1997. Nutrient limitation and eutrophication potential in the Cape Fear and New River Estuaries. Report No. 313. Water Resources Research Institute of the University of North Carolina, Raleigh, NC.Google Scholar
  50. Mallin, M.A., M.R. McIver, H.A. Wells, D.C. Parsons, and V.L. Johnson. 2005. Reversal of eutrophication following sewage treatment upgrades in the New River Estuary, North Carolina. Estuaries 28: 750–760.CrossRefGoogle Scholar
  51. McCarthy, M.J.P.L., L. Lavrentyev, L. Yang, Y. Zhang, B. Qin Chen, and W.S. Gardner. 2007. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581: 195–207.CrossRefGoogle Scholar
  52. Moisander, P.H., L.A. Cheshire, J. Braddy, E.S. Calandrino, M. Hoffman, M.F. Piehler, and H.W. Paerl. 2012. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology 79: 800–811.CrossRefGoogle Scholar
  53. Moss, B., S. Kosten, M. Meerhoff, R.W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, L. De Meester, H. Paerl, and M. Scheffer. 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.CrossRefGoogle Scholar
  54. National Oceanic and Atmospheric Administration. 2012. Spatial Trends in Coastal Socioeconomics Demographic Trends Database: 1970–2010. http://coastalsocioeconomics.noaa.gov/.
  55. National Research Council. 2000. Clean coastal waters: understanding and reducing the effects of nutrient pollution. Ocean Studies Board and Water Science and Technology Board, Commission on Geosciences, Environment, and Resources. Washington, DC: National Academy Press. 405 p.Google Scholar
  56. Naumann, E. 1921. Einige Grundlinien der regionalen Limnologie. Lunds Universitets Årsskrift N.F. II, 17:1–22.Google Scholar
  57. Nixon, S.W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.CrossRefGoogle Scholar
  58. Nixon, S.W., J.W. Ammerman, L.P. Atkinson, V.M. Berounski, G. Billen, W.C. Boicourt, W.R. Boynton, T.M. Church, D.M. Ditoro, R. Elmgren, J.H. Garber, A.E. Giblin, R.A. Jahnke, N.J.P. Owens, M.E.Q. Pilson, and S.P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land–sea margin of the North Atlantic Ocean. Biogeochemistry 35: 141–180.CrossRefGoogle Scholar
  59. North, R.L., S.J. Guildford, R.E.H. Smith, S.M. Havens, and M.R. Twiss. 2007. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnology and Oceanography 52: 315–328.CrossRefGoogle Scholar
  60. O’Goman, P. 2012. Sensitivity of tropical precipitation extremes to climate change. Nature Geoscience 5: 697–700.CrossRefGoogle Scholar
  61. Padisak, J. 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, Supplement 107: 563–593.Google Scholar
  62. Paerl, H.W. 1990. Physiological ecology and regulation of N2 fixation in natural waters. Advances in Microbial Ecology 11: 305–344.CrossRefGoogle Scholar
  63. Paerl, H.W. 1997. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnology and Oceanography 42: 1154–1165.CrossRefGoogle Scholar
  64. Paerl, H.W. 2009. Controlling eutrophication along the freshwatermarine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32: 593–601.CrossRefGoogle Scholar
  65. Paerl, H.W., and J. Huisman. 2008. Blooms like it hot. Science 320: 57–58.CrossRefGoogle Scholar
  66. Paerl, H.W., and D. Justić. 2011. Primary producers: phytoplankton ecology and trophic dynamics in coastal waters. In Treatise on estuarine and coastal science, vol. 6, ed. E. Wolanski and D.S. McLusky, 23–42. Waltham: Academic.CrossRefGoogle Scholar
  67. Paerl, H.W., and V. Paul. 2011. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363.CrossRefGoogle Scholar
  68. Paerl, H.W., and M.F. Piehler. 2008. Nitrogen and marine eutrophication. In Nitrogen in the marine environment, vol. 2, ed. D.G. Capone, M. Mulholland, and E. Carpenter, 529–567. Orlando: Academic.CrossRefGoogle Scholar
  69. Paerl, H.W., and J. Huisman. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1(1): 27–37.Google Scholar
  70. Paerl, H.W., and J.T. Scott. 2010. Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environmental Science & Technology 44: 7756–7758.CrossRefGoogle Scholar
  71. Paerl, H.W., M.A. Mallin, C.A. Donahue, M. Go and B.L. Peierls. 1995. Nitrogen loading sources and eutrophication of the Neuse River estuary, NC: direct and indirect roles of atmospheric deposition. UNC Water Resources Research Institute Report No. 291. 119 p.Google Scholar
  72. Paerl, H.W., J.D. Bales, L.W. Ausley, C.P. Buzzelli, L.B. Crowder, L.A. Eby, J.M. Fear, M. Go, B.L. Peierls, T.L. Richardson, and J.S. Ramus. 2001. Ecosystem impacts of 3 sequential hurricanes (Dennis, Floyd and Irene) on the US’s largest lagoonal estuary, Pamlico Sound, NC. Proceedings of the National Academy of Sciences of the United States of America 98(10): 5655–5660.CrossRefGoogle Scholar
  73. Paerl, H.W., L.M. Valdes, M.F. Piehler, and M.E. Lebo. 2004. Solving problems resulting from solutions: evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North Carolina, USA. Environmental Science and Technology 38: 3068–3073.CrossRefGoogle Scholar
  74. Paerl, H.W., L.M. Valdes, J.E. Adolf, B.M. Peierls, and L.W. Harding Jr. 2006. Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnology and Oceanography 51: 448–462.CrossRefGoogle Scholar
  75. Paerl, H.W., L.M. Valdes, A.R. Joyner, and V. Winkelmann. 2007. Phytoplankton indicators of ecological change in the nutrient and climatically-impacted Neuse River–Pamlico sound system, North Carolina. Ecological Applications 17(5): 88–101.CrossRefGoogle Scholar
  76. Paerl, H.W., J.J. Joyner, A.R. Joyner, K. Arthur, V.J. Paul, J.M. O’Neil, and C.A. Heil. 2008. Co-occurrence of dinoflagellate and cyanobacterial harmful algal blooms in southwest Florida coastal waters: a case for dual nutrient (N and P) input controls. Marine Ecology Progress Series 371: 143–153.CrossRefGoogle Scholar
  77. Paerl, H.W., K.L. Rossignol, Nathan S. Hall, B.L. Peierls, and Michael S. Wetz. 2010. Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA. Estuaries and Coasts 33: 485–497.CrossRefGoogle Scholar
  78. Paerl, H.W., N.S. Hall, and E.S. Calandrino. 2011a. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409: 1739–1745.CrossRefGoogle Scholar
  79. Paerl, H.W., H. Xu, M.J. McCarthy, G. Zhu, B. Qin, Y. Li, and W.S. Gardner. 2011b. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Research 45: 1973–1983.CrossRefGoogle Scholar
  80. Paerl, H.W., N.S. Hall, B.L. Peierls, K.L. Rossignol and A.R. Joyner. 2013. Hydrologic variability and its control of phytoplankton community structure and function in two shallow, coastal, lagoonal ecosystems: the Neuse and New River Estuaries, North Carolina, USA. Estuaries and Coasts. DOI:10.1007/s12237-013-9686-0.
  81. Parma, S. 1980. The history of the eutrophication concept and the eutrophication in the Netherlands. Hydrobiological Bulletin 14: 5–11.CrossRefGoogle Scholar
  82. Paul, V.J. 2008. Global warming and cyanobacterial harmful algal blooms. In Cyanobacterial harmful algal blooms: state of the science and research needs. Advances in Experimental Medicine and Biology, ed. Hudnell, H.K, vol. 619. Springer, pp. 239–257.Google Scholar
  83. Peeters, J.C.H., and L. Peperzak. 1990. Nutrient limitation in the North Sea: a bioassay approach. Netherlands Journal of Sea Research 26: 61–73.CrossRefGoogle Scholar
  84. Peierls, B.L., N.F. Caraco, M.L. Pace, and J.J. Cole. 1991. Human influence on river nitrogen. Nature 350: 386–387.CrossRefGoogle Scholar
  85. Peierls, B.L., N.S. Hall, and H.W. Paerl. 2012. Non-monotonic responses of phytoplankton biomass accumulation to hydrologic variability: a comparison of two coastal plain North Carolina estuaries. Estuaries and Coasts 35: 1376–1392.CrossRefGoogle Scholar
  86. Rabalais, N.N. 2002. Nitrogen in aquatic ecosystems. Ambio 16: 102–112.CrossRefGoogle Scholar
  87. Rabalais, N.N., and R.E. Turner (eds.). 2001. Coastal hypoxia: consequences for living resources and ecosystems. Coastal and Estuarine Studies 58. Washington, DC: American Geophysical Union. 454p.Google Scholar
  88. Redfield, A.C. 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–222.Google Scholar
  89. Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on the composition of sea-water. In The sea, vol. 2, ed. N.M. Hill, 26–77. New York: Wiley-Interscience.Google Scholar
  90. Reynolds, C.S. 2006. Ecology of phytoplankton (ecology, biodiversity and conservation). Cambridge: Cambridge University Press.Google Scholar
  91. Rudek, J., H.W. Paerl, M.A. Mallin, and P.W. Bates. 1991. Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina. Marine Ecology Progress Series 75: 133–142.CrossRefGoogle Scholar
  92. Ryther, J., and W. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171: 1008–1013.CrossRefGoogle Scholar
  93. Scheffer, M., D. Straile, E.H. van Nes, and H. Hosper. 2001. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46: 1780–1783.CrossRefGoogle Scholar
  94. Schindler, D.W. 1975. Whole-lake eutrophication experiments with phosphorus, nitrogen and carbon. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 19: 3221–3231.Google Scholar
  95. Schindler, D.W. 2012. The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B. doi:10.1098/rspb.2012.1032.Google Scholar
  96. Schindler, D.W., and J.R. Vallentyne. 2008. The algal bowl: overfertilization of the world’s freshwaters and estuaries. Edmonton: University of Alberta Press.Google Scholar
  97. Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M. Paterson, K.G. Beaty, M. Lyng, and S.E.M. Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37 year whole ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.CrossRefGoogle Scholar
  98. Scott, J.T., and M.J. McCarthy. 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnology and Oceanography 55: 1265–1270.CrossRefGoogle Scholar
  99. Scott, J.T., R.D. Doyle, S.J. Prochnow, and J.D. White. 2008. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured? Ecological Applications 18: 805–819.CrossRefGoogle Scholar
  100. Scott, J.T., J.K. Stanley, R.D. Doyle, M.G. Forbes, and B.W. Brooks. 2009. River–reservoir transition zones are nitrogen fixation hot spots regardless of ecosystem trophic state. Hydrobiologia 625: 61–68.CrossRefGoogle Scholar
  101. Seitzinger, S.P. 1988. Denitrification in freshwater and coastal marine systems: ecological and geochemical significance. Limnology and Oceanography 33: 702–724.CrossRefGoogle Scholar
  102. Smith, V.H., and D.W. Schindler. 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24(4): 201–207.CrossRefGoogle Scholar
  103. Spivak, A.C., M.J. Vanni, and E.M. Mette. 2011. Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology 56: 279–291.CrossRefGoogle Scholar
  104. Sprengel, C.P. 1839. Die Lehre vom Dünger oder Beschreibung aller bei der Landwirthschaft gebräuchlicher vegetablilischer, animalischer und mineralischer Düngermaterialien, nebst Erklärung ihrer Wirkungsart. Leipzig.Google Scholar
  105. Steffen, M.M., B.S. Belisle, S.B. Watson, G.L. Boyer, and S.W. Wilhelm. 2014. Review: status, causes and controls of cyanobacterial blooms in Lake Erie. Journal of Great Lakes Research. doi:10.1016/j.jglr.2013.12.012.Google Scholar
  106. Sterner, R. 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93: 433–445.CrossRefGoogle Scholar
  107. Stüken, A., J. Rücker, T. Endrulat, K. Preussel, M. Hemm, B. Nixdorf, U. Karsten, and C. Wiedner. 2006. Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45: 696–703.CrossRefGoogle Scholar
  108. Suikkanen, S., M. Laamanen, and M. Huttunen. 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine and Coastal Shelf Science 71: 580–592.CrossRefGoogle Scholar
  109. Sylvan, J.B., Q. Dortch, D.M. Nelson, A.F. Maier Brown, W. Morrison, and J.W. Ammerman. 2006. Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environmental Science & Technology 40: 7548–7553.CrossRefGoogle Scholar
  110. Thienemann, A. 1915. Physikalische und chemische Untersuchungen in den Maaren der Eifel. Verein der preussischen Rheinlande und Westfalens 70: 250–302.Google Scholar
  111. Tomas, C.R., J. Peterson, and A.O. Tatters. 2007. Harmful algal species from Wilson Bay, New River, North Carolina: composition, nutrient bioassay and HPLC pigment analyses. North Carolina Water Resources Research Institute Report number 369 (31 pages). Available at http://repository.lib.ncsu.edu/dr/bitstream/1840.4/2002/1/NC.
  112. Trenberth, K.E. 2005. The impact of climate change and variability on heavy precipitation, floods, and droughts. In Encyclopedia of hydrological sciences, ed. M.G. Anderson, 1–11. Hoboken: Wiley.Google Scholar
  113. US Environmental Protection Agency. 2011. Reactive nitrogen in the United States: an analysis of inputs, flows, consequences, and management options. Scientific Advisory Board Publication No. EPA-SAB-11-013. Washington, DC.Google Scholar
  114. Vitousek, P.M., H.A. Mooney, J. Lubchenko, and J.M. Mellilo. 1997. Human domination of Earth’s ecosystem. Science 277: 494–499.CrossRefGoogle Scholar
  115. Vollenweider, R A. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organisation for Economic Co-operation and Development, Paris. Technical Report DAS/CS 1/68.27. 250 p.Google Scholar
  116. Watkinson, A.J., J.M. O’Neil, and W.C. Dennison. 2005. Ecophysiology of the marine cyanobacterium Lyngbya majuscula (Oscillatoriaceae) in Moreton Bay, Australia. Harmful Algae 4: 697–715.CrossRefGoogle Scholar
  117. Webster, P.J., G.J. Holland, J.A. Curry, and H.R. Chang. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 1844–1846.CrossRefGoogle Scholar
  118. Wetz, M.S., and H.W. Paerl. 2008. Estuarine phytoplankton responses to hurricanes and tropical storms with different characteristics (trajectory, rainfall, winds). Estuaries and Coasts 31: 419–429.Google Scholar
  119. Wetzel, R.G. 2001. Limnology, third edition: lake and river ecosystems. Orlando: Academic.Google Scholar
  120. Wiedner, C., J. Rücker, R. Brüggemann, and B. Nixdorf. 2007. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152: 473–484.CrossRefGoogle Scholar
  121. Xu, H., H.W. Paerl, B. Qin, G. Zhu, and G. Gao. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography 55: 420–432.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Hans W. Paerl
    • 1
  • Nathan S. Hall
    • 1
  • Benjamin L. Peierls
    • 1
  • Karen L. Rossignol
    • 1
  1. 1.UNC–CH Institute of Marine SciencesMorehead CityUSA

Personalised recommendations