Skip to main content

Fortnightly Tidal Modulations Affect Net Community Production in a Mesotidal Estuary

Abstract

Optical in situ chemical sensors enable sampling intervals and durations that rival acoustic techniques used for measuring currents. Coupling these high-frequency biogeochemical and physical measurements in estuaries to address ecosystem-scale questions, however, is still comparatively novel. This study investigated how tides affect ecosystem metabolism in a mesotidal estuary in central California (Elkhorn Slough). Dissolved oxygen measurements were used to estimate the terms in a control volume budget for a tidal creek/marsh complex at tidal timescales over several weeks. Respiration rates were 1.6 to 7.3 g O2 m−2 day−1; net community production approached 20 g O2 m−2 day−1. We found that aquatic NCP integrated throughout the creek complex varied significantly over the spring-neap cycle. The intertidal contribution to aquatic metabolism was net heterotrophic during spring tides and generally in balance during neap tides because spring-tide marsh inundation was limited to nighttime, and therefore the marsh could not contribute any primary production to the water column. At the estuary scale, the fortnightly export of oxygen from the main channel to the intertidal was largely balanced by an advective flux up-estuary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Aanderraa Data Instruments. 2007. TD 218 operating manual: oxygen optode 3830, 3835, 3930, 3975,4130, 4175, 16th edn. Bergen: Aanderraa Data Instruments.

    Google Scholar 

  • Antlfinger, A.E., and E. Dunn. 1979. Seasonal patterns of CO2 and water vapor exchange of three salt marsh succulents. Oecologia, 43(3): 249–260.

    Article  Google Scholar 

  • Arnold, K.E., and S.N. Murray. 1980. Relationships between irradiance and photosynthesis for marine benthic green algae (Chlorophyta) of differing morphologies. Journal of Experimental Marine Biology and Ecology 43(2): 183–192.

    Article  Google Scholar 

  • Banas, N.S., and B.M. Hickey. 2005. Mapping exchange and residence time in amodel ofWillapa Bay, Washington, a branching, macrotidal estuary. Journal of Geophysical Research-Oceans 110(C11): C11011.

    Article  Google Scholar 

  • Beck, N., and K. Bruland. 2000. Diel biogeochemical cycling in a hyperventilating shallow estuarine environment. Estuaries and Coasts 23(2): 177–187.

    CAS  Article  Google Scholar 

  • Berg, P., and M. Huettel. 2008. Integrated benthic exchange dynamics. Oceanography 21(4): 164–167.

    Article  Google Scholar 

  • Bryant, L., C. Lorrai, D. McGinnis, A. Brand, A. Wüest, and J. Littlea. 2010. Variable sediment oxygen uptake in response to dynamic forcing. Limnology & Oceanography 55(2): 950–964.

    CAS  Article  Google Scholar 

  • Caffrey, J. 2004. Factors controlling net ecosystem metabolism in US estuaries. Estuaries and Coasts 27(1): 90–101.

    CAS  Article  Google Scholar 

  • Caffrey, J. M., M. Brown, W. Tyler, and M. Silberstein (eds.) 2002a. Changes in a California estuary: a profile of Elkhorn Slough. Moss Landing: Elkhorn Slough Foundation.

  • Caffrey, J.M., N. Harrington, and B. Ward. 2002b. Biogeochemical processes in a small California estuary. 1. Benthic fluxes and pore water constituents reflect high nutrient freshwater inputs. Marine Ecology-Progress Series 233: 39–53.

    CAS  Article  Google Scholar 

  • Cai, W.-J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3: 123–145.

    Article  Google Scholar 

  • Cheek, A.O. 2011. Diel hypoxia alters fitness in growth-limited estuarine fish (Fundulus grandis). Journal of Experimental Marine Biology and Ecology 409(1): 13–20.

    Article  Google Scholar 

  • Cheek, A.O., C.A. Landry, S.L. Steele, and S. Manning. 2009. Diel hypoxia in marsh creeks impairs the reproductive capacity of estuarine fish populations. Marine Ecology Progress Series 392: 211–221.

    CAS  Article  Google Scholar 

  • Cloern, J.E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary. Journal of Marine Research 49(1): 203–221.

    Article  Google Scholar 

  • Corbett, D. 2010. Resuspension and estuarine nutrient cycling: insights from the Neuse River Estuary. Biogeosciences 7(10): 3289–3300.

    CAS  Article  Google Scholar 

  • D’Avanzo, C., and J.N. Kremer. 1994. Diel oxygen dynamics and anoxic events in an eutrophic estuary of Waquoit Bay, Massachusetts. Estuaries 17(1): 131–139.

    Article  Google Scholar 

  • Dettmann, E.H. 2001. Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis. Estuaries 24(4): 481–490.

    CAS  Article  Google Scholar 

  • Dodds, W.K., and J.J. Cole. 2007. Expanding the concept of trophic state in aquatic ecosystems: it’s not just the autotrophs. Aquatic Sciences 69(4): 427–439.

    CAS  Article  Google Scholar 

  • Farris, C.N., and C.A. Oviatt. 1999. Changes in metabolic rates under fluctuating salinity regimes for two subtidal estuarine habitats. Estuaries 22(1): 126–137.

    CAS  Article  Google Scholar 

  • Fischer, H.B., E.J. List, R.C.Y. Koh, J. Imberger, and N.H. Brooks. 1979. Mixing in inland and coastal waters. New York: Academic.

    Google Scholar 

  • Gazeau, F., et al. 2005. Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods. Marine Ecology Progress Series 301: 23–41.

    CAS  Article  Google Scholar 

  • Geyer, W.R. 1993. Three-dimensional tidal flow around headlands. Journal of Geophysical Research-Oceans 98(C1): 955–966.

    Article  Google Scholar 

  • Geyer, W.R., J.H. Trowbridge, and M.M. Bowen. 2000. The dynamics of a partially mixed estuary. Journal of Physical Oceanography 30(8): 2035–2048.

    Article  Google Scholar 

  • Hammond, D., et al. 1985. Benthic fluxes in San Francisco Bay. Hydrobiologia 129(1): 69–90. doi:10.1007/BF00048688.

    CAS  Article  Google Scholar 

  • Howarth, R., A. Sharpley, and D. Walker. 2002. Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries and Coasts 25(4): 656–676.

    CAS  Article  Google Scholar 

  • Howarth, R.W., et al. 2013. Metabolism of a nitrogen-enriched coastal marine lagoon during the summertime. Biogeochemistry doi:10.1007/s10533-013-9901-x.

    Google Scholar 

  • Hughes, B. 2009. Synthesis for management of eutrophication issues in Elkhorn Slough. Tech. Rep. 1, Elkhorn Slough Technical Report Series.

  • Hughes, B., J. Haskins, K. Wasson, and E. Watson. 2011. Identifying factors that influence expression of eutrophication in a central California estuary. Marine Ecology Progress Series. doi:10.3354/meps09295.

    Google Scholar 

  • Jannasch, H.W., L.J. Coletti, K.S. Johnson, S.E. Fitzwater, J.A. Needoba, and J. Plant. 2008. The Land/Ocean Biogeochemical Observatory: a robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries. Limnology & Oceanography-Methods 6: 263–276.

    CAS  Article  Google Scholar 

  • Jay, D.A., W.R. Geyer, R.J. Uncles, J. Vallino, J. Largier, and W.R. Boynton. 1997. A review of recent developments in estuarine scalar flux estimation. Estuaries 20(2): 262–280.

    Article  Google Scholar 

  • Johnson, K.S., and L.J. Coletti. 2002. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research Part I-Oceanographic Research Papers 49(7): 1291–1305.

    CAS  Article  Google Scholar 

  • Johnson, K.S., J.A. Needoba, S.C. Riser, and W.J. Showers. 2007. Chemical sensor networks for the aquatic environment. Chemical Reviews 107: 623–640.

    CAS  Article  Google Scholar 

  • Jorgensen, B., and N. Revsbech. 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology & Oceanography 30(1): 111–122.

    Article  Google Scholar 

  • Kemp,W., andW. Boynton. 1980. Influence of biological and physical processes on dissolved oxygen dynamics in an estuarine system: implications for measurement of community metabolism. Estuarine and Coastal Marine Science 11(4): 407–431.

    Article  Google Scholar 

  • Kemp, W., E. Smith, M. Marvin-DiPasquale, and W. Boynton. 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology Progress Series 150(1): 229–248.

    CAS  Article  Google Scholar 

  • Kemp, W., J. Testa, D. Conley, D. Gilbert, and J. Hagy. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6(12): 2985–3008.

    CAS  Article  Google Scholar 

  • Kundu, P., and I. Cohen. 2002. Fluid mechanics. New York: Academic.

    Google Scholar 

  • Lesen, A.E. 2006. Sediment organic matter composition and dynamics in San Francisco Bay, California, USA: seasonal variation and interactions between water column chlorophyll and the benthos. Estuarine, Coastal and Shelf Science 66(3): 501–512.

    Article  Google Scholar 

  • Lucas, L., J. Koseff, S. Monismith, J. Cloern, and J. Thompson. 1999. Processes governing phytoplankton blooms in estuaries. II: the role of horizontal transport. Marine Ecology-Progress Series 187: 17–30.

    Article  Google Scholar 

  • MacCready, P., and W.R. Geyer. 2010. Advances in estuarine physics. Annual Review of Marine Science 2(1): 35–58. doi:10.1146/annurev-marine-120308-081015.

    Article  Google Scholar 

  • Malzone, C. 1999. Tidal scour and its relation to erosion and sediment transport in Elkhorn Slough. M.S. thesis, Department of Geology, San Jose State University.

  • McLaughlin, K., and M. Sutula 2008. Developing nutrient numeric endpoints for California estuaries: an implementation plan. Tech. Rep. Technical Report 540, Southern California Coastal Water Research Project, Costa Mesa.

  • Migné, A., N. Spilmont, and D. Davoult. 2004. In situ measurements of benthic primary production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France). Continental Shelf Research 24(13): 1437–1449.

    Article  Google Scholar 

  • National Ocean Service. 2000. Tide and current glossary. Silver Spring: National Oceanic and Atmospheric Administration, Center for Operational Oceanographic Products and Services.

  • Needoba, J.A., T.D. Peterson, and K.S. Johnson. 2012. Method for the quantification of aquatic primary production and net ecosystem metabolism using in situ dissolved oxygen sensors. In S.M. Tiquia-Arashiro (ed.) Molecular biological technologies for ocean sensing. Springer protocols handbooks, (pp. 73–101). New York: Humana.

    Chapter  Google Scholar 

  • Nidzieko, N.J. 2009. Dynamics of a seasonally low-inflow estuary: circulation and dispersion in Elkhorn Slough, California. Ph.D. thesis, Stanford University.

  • Nidzieko, N.J., and S.G. Monismith. 2013. Contrasting seasonal and fortnightly variations in the circulation of a seasonally-inverse estuary, Elkhorn Slough, California. Estuaries and Coasts 36(1): 1–17. doi:10.1007/s12237-012-9548-1.

    Article  Google Scholar 

  • Nixon, S.W., and C.A. Oviatt. 1973. Ecology of a NewEngland Salt Marsh. Ecological Monographs 43(4): 463–498. doi:10.2307/1942303.

    Article  Google Scholar 

  • Nixon, S., et al. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35(1): 141–180.

    CAS  Article  Google Scholar 

  • Nunes Vaz, R.A., G.W. Lennon, and J.R.D. Samarasinghe. 1989. The negative role of turbulence in estuarine mass-transport. Estuarine Coastal and Shelf Science 28(4): 361–377.

    CAS  Article  Google Scholar 

  • O’Connor, B, and M Hondzo. 2008. Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments. Limnology & Oceanography 53(2): 566.

    Article  Google Scholar 

  • Odum, H. 1956. Primary production in flowing waters. Limnology & Oceanography 1(2): 102–117.

    Article  Google Scholar 

  • Pearcy, RW, and SL Ustin. 1984. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia 62(1): 68–73.

    Article  Google Scholar 

  • Porter, E, M Owens, and J Cornwell. 2006. Effect of sediment manipulation on the biogeochemistry of experimental sediment systems. Journal of Coastal Research 22: 1539–1551.

    Article  Google Scholar 

  • Porter, E, R Mason, and L Sanford. 2010. Effect of tidal resuspension on benthic-pelagic coupling in an experimental ecosystem study. Marine Ecology Progress Series 413: 33–53.

    CAS  Article  Google Scholar 

  • Ralston, DK, and MT Stacey. 2005. Longitudinal dispersion and lateral circulation in the intertidal zone. Journal of Geophysical Research-Oceans 110(C7): c07015.

    Article  Google Scholar 

  • Ro, KS, and PG Hunt. 2006. A new unified equation for wind-driven surficial oxygen transfer into stationary water bodies. Transactions of the American Society of Agricultural and Biological Engineers 49(5): 1615–1622.

    Google Scholar 

  • Shaffer, G, and C Onuf. 1983. An analysis of factors influencing the primary production of the benthic microflora in a southern California lagoon. Netherlands Journal of Sea Research 17(1): 126–144.

    CAS  Article  Google Scholar 

  • Smith, R. 1997. Stratification-induced lateral dispersion of a density anomaly. Journal of Fluid Mechanics 353: 0022–1120.

    Article  Google Scholar 

  • Smith, S, and J Hollibaugh. 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31(1): 75–89.

    Article  Google Scholar 

  • Staehr, P, J Testa, W Kemp, J Cole, K Sand-Jensen, and S Smith. 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.

    Article  Google Scholar 

  • Statham, P.J. 2012. Nutrients in estuaries—an overview and the potential impacts of climate change. Science of the Total Environment 434: 213–227.

    CAS  Article  Google Scholar 

  • Swaney, D.P., R.W. Howarth, and T.J. Butler. 1999. A novel approach for estimating ecosystem production and respiration in estuaries: application to the oligohaline and mesohaline Hudson River. Limnology & Oceanography 44(6): 1509–1521.

    CAS  Article  Google Scholar 

  • Testa, J., and W. Kemp. 2008. Variability of biogeochemical processes and physical transport in a partially stratified estuary: a box-modeling analysis. Marine Ecology Progress Series 356: 63–79.

    CAS  Article  Google Scholar 

  • Tobias, C.R., J. Bohlke, and J.W. Harvey. 2007. The oxygen-18 isotope approach for measuring aquatic metabolism in high productivity waters. Limnology & Oceanography 52(4): 1439.

    CAS  Article  Google Scholar 

  • Tyler, R.M., D.C. Brady, and T.E. Targett. 2009. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries and Coasts 32(1): 123–145.

    CAS  Article  Google Scholar 

  • Wankel, S., C. Kendall, and A. Paytan. 2009. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California. Journal of Geophysical Research 114(G1): G01011.

    Article  Google Scholar 

  • Wilke, C.R., and P. Chang. 1955. Correlation of diffusion coefficients in dilute solutions. AIChE Journal 1(2): 264–270. doi:10.1002/aic.690010222.

    CAS  Article  Google Scholar 

  • Zedler, J.B., T. Winfield, and P. Williams. 1980. Salt marsh productivity with natural and altered tidal circulation. Oecologia 44(2): 236–240.

    Article  Google Scholar 

  • Zimmerman, J.T.F. 1986. The tidal whirlpool—a review of horizontal dispersion by tidal and residual currents. Netherlands Journal of Sea Research 20(2–3): 133–154.

    Article  Google Scholar 

  • Zimmerman, R.C., A. Cabello-Pasini, and R. S. Alberte. 1994. Modeling daily production of aquatic macrophytes from irradiance measurements: a comparative analysis. Marine Ecology Progress Series 114: 275–288.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Data collection was supported by a Stanford University Woods Institute for the Environment grant. Field assistance was provided by C. Francis, J. Smith, M. Squibb, R. Walter, and K. Willis. Bathymetry LIDAR data used in the upper slough volume calculations were provided by P. Iampietro and R. Kvitek at CSU Monterey Bay. The constructive comments of two anonymous reviewers greatly improved the manuscript. The guest editors of the special issue are thanked for their patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Nidzieko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nidzieko, N.J., Needoba, J.A., Monismith, S.G. et al. Fortnightly Tidal Modulations Affect Net Community Production in a Mesotidal Estuary. Estuaries and Coasts 37 (Suppl 1), 91–110 (2014). https://doi.org/10.1007/s12237-013-9765-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9765-2

Keywords

  • Biogeochemical cycling
  • Elkhorn Slough
  • Tides
  • Air-sea gas exchange
  • Primary production
  • Ecosystem metabolism
  • Estuarine mixing
  • Net community production