Estuaries and Coasts

, Volume 37, Supplement 1, pp 180–197 | Cite as

Eutrophication-Driven Shifts in Primary Producers in Shallow Coastal Systems: Implications for System Functional Change

Article

Abstract

Significant progress has been made recently towards a better understanding of the nature, causes, and consequences of anthropogenic eutrophication of shallow coastal systems. It is well established that, in pristine systems dominated by seagrasses, incipient to moderate eutrophication often leads to the replacement of seagrasses by phytoplankton and loose macroalgal mats as the dominant producers. However, less is known about the interactions between phytoplankton and loose macroalgae at intense eutrophication. Using a combination of original research and literature data, we provide support for the hypothesis that substantial macroalgal decline may occur at intense eutrophication due to severe water column shading. Our results suggest that such declines may be widespread. However, we also show that intense eutrophication is not always necessarily conducive to severe water column shading and large macroalgal declines, possibly due to short water residence time and/or elevated grazing on phytoplankton. Furthermore, we provide support to the hypothesis that the occurrence of hypoxic/anoxic conditions in eutrophication-driven shifts in dominant primary producer assemblages influences the nature and extent of functional change in the system. Focusing on the macroalgal blooms and seagrass decline that often occur at incipient/moderate eutrophication, we show the blooms have a positive effect on epifaunal abundance under well-oxygenated conditions, but a negative effect if pervasive anoxic/hypoxic conditions develop with the bloom. These findings provide support to prior suggestions that secondary productivity in shallow coastal systems may increase as seagrasses get replaced by loose macroalgal stands if the stands remain well oxygenated. In concert, our results contribute to an improvement of our current model of eutrophication of shallow coastal systems and suggest that further effort should be put on ascertaining the mechanisms that may prevent severe water column shading and large macroalgal decline at intense eutrophication, as well as thorough documentation of the impacts of anoxic/hypoxic conditions on system functionality at different stages of eutrophication.

Keywords

Eutrophication Seagrasses Macroalgae Phytoplankton Anoxia Ecosystem 

References

  1. Arnold, K.E., and S.N. Murray. 1980. Relationships between irradiance and photosynthesis for marine benthic green algae (Chlorophyta) of differing morphologies. Journal of Experimental Marine Biology and Ecology 43: 183–192.CrossRefGoogle Scholar
  2. Arroyo, N.L., K. Aarnio, M. Mäensivu, and E. Bonsdorff. 2012. Drifting filamentous algal mats disturb sediment fauna: Impacts on macro-meiofaunal interactions. Journal of Experimental Marine Biology and Ecology 420–421: 77–90.CrossRefGoogle Scholar
  3. Bach, S., G. Thayer, and M. LaCroix. 1986. Export of detritus from eelgrass (Zostera marina) beds near Beaufort, North Carolina, USA. Marine Ecology Progress Series 28: 265–278.CrossRefGoogle Scholar
  4. Banta, G.T., M.F. Pedersen, and S.L. Nielsen. 2004. Decomposition of marine primary producers: Consequences for nutrient recycling and retention in coastal ecosystems. In Estuarine nutrient cycling: The influence of primary producers, ed. S.L. Nielsen, G.T. Banta, and M.F. Pedersen, 187–216. Dordrecht: Kluwer Academic.Google Scholar
  5. Beach, K.S., C.M. Smith, T. Michael, and H.W. Shin. 1995. Photosynthesis in reproductive unicells of Ulva fasciata and Enteromorpha flexuosa: Implications for ecological success. Marine Ecology Progress Series 125: 229–237.CrossRefGoogle Scholar
  6. Borum, J., and K. Sand-Jensen. 1996. Is total primary production in shallow coastal marine waters stimulated by nitrogen loading? Oikos 76: 406–410.CrossRefGoogle Scholar
  7. Boström, C., and E. Bonsdorff. 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37: 153–166.CrossRefGoogle Scholar
  8. Boynton, W.R., L. Murray, J.D. Hagy, C. Stokes, and W.M. Kemp. 1996. A comparative analysis of eutrophication patterns in a temperate coastal lagoon. Estuaries 19: 408–421.CrossRefGoogle Scholar
  9. Bricker, S.B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2008. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae 8: 21–32.CrossRefGoogle Scholar
  10. Bruschetti, M., T. Luppi, E. Fanjul, A. Rosenthal, and O. Iribarne. 2008. Grazing effect of the invasive reef-forming polychaete Ficopomatus enigmaticus (Fauvel) on phytoplankton biomass in a SW Atlantic coastal lagoon. Journal of Experimental Marine Biology and Ecology 354: 212–219.CrossRefGoogle Scholar
  11. Burkholder, J.M., K.M. Mason, and H.B. Glasgow. 1992. Water-column nitrate enrichment promotes decline of eelgrass Zostera marina: Evidence from seasonal mesocosm experiments. Marine Ecology Progress Series 81: 163–178.CrossRefGoogle Scholar
  12. Burkholder, J.M., H.B. Glasgow, and J.E. Cooke. 1994. Comparative effects of water-column nitrate enrichment on eelgrass Zostera marina, shoalgrass Halodule wrightii, and widgeongrass Ruppia maritima. Marine Ecology Progress Series 105: 121–138.CrossRefGoogle Scholar
  13. Burkholder, J.M., D.A. Tomasko, and B.W. Touchette. 2007. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology 350: 46–72.CrossRefGoogle Scholar
  14. Cebrian, J. 1999. Patterns in the fate of production in plant communities. The American Naturalist 154: 449–468.CrossRefGoogle Scholar
  15. Cebrian, J. 2002. Variability and control of carbon consumption, export and accumulation in marine communities. Limnology and Oceanography 47: 11–22.CrossRefGoogle Scholar
  16. Cebrian, J., and J. Lartigue. 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs 74: 237–259.CrossRefGoogle Scholar
  17. Cebrian, J., M. Williams, J. McClelland, and I. Valiela. 1998. The dependence of heterotrophic consumption and C accumulation on autotrophic nutrient content in ecosystems. Ecology Letters 1: 165–170.CrossRefGoogle Scholar
  18. Cebrian, J., J.P. Stutes, and B. Christiaen. 2013. Effects of grazing and fertilization on epiphyte growth dynamics under moderately eutrophic conditions: Implications for grazing rate estimates. Marine Ecology Progress Series 474: 121–133.CrossRefGoogle Scholar
  19. Chisholm, J.R.M., and J.M. Jaubert. 1997. Photoautotrophic metabolism of Caulerpa taxifolia (Chlorophyta) in the NW Mediterranean. Marine Ecology Progress Series 153: 113–123.CrossRefGoogle Scholar
  20. Chisholm, J.R.M., M. Marchioretti, and J.M. Jaubert. 2000. Effect of low water temperature on metabolism and growth of a subtropical strain of Caulerpa taxifolia (Chlorophyta). Marine Ecology Progress Series 201: 189–198.CrossRefGoogle Scholar
  21. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  22. Cole, M.L., K.D. Kroeger, J.W. McClelland, and I. Valiela. 2006. Effects of watershed land use on nitrogen concentration and δ15nitrogen in groundwater. Biogeochemistry 77: 199–215.CrossRefGoogle Scholar
  23. Collado-Vides, L., V.G. Gaccia, J.N. Boyer, and J.W. Fourqurean. 2007. Tropical seagrass-associated macroalgae distributions and trends relative to water quality. Estuarine, Coastal and Shelf Science 73: 680–694.CrossRefGoogle Scholar
  24. D’Avanzo, C., and J.N. Kremer. 1994. Diel oxygen dynamics and anoxic events in an eutrophic estuary of Waquoit Bay, Massachusetts. Estuaries 17: 131–139.CrossRefGoogle Scholar
  25. Dawes, C.J., and E.W. Koch. 1990. Physiological responses of the red algae Gracilaria verrucosa and G. tikvahiae before and after nutrient enrichment. Bulletin of Marine Science 46: 335–344.Google Scholar
  26. Dawes, C.J., J. Orduña-Rojas, and D. Robledo. 1999. Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. Journal of Applied Phycology 10: 419–425.CrossRefGoogle Scholar
  27. De Casabianca, M.L. 1996. France—the Mediterranean lagoons. In Marine benthic vegetation: Recent changes and the effects of eutrophication, ed. W. Schramm and P.H. Nienhuis, 307–329. Berlin: Springer.CrossRefGoogle Scholar
  28. De Vries, I., C.J.M. Philippart, E.G. De Groot, and M.W.M. van der Tol. 1996. Coastal eutrophication and marine benthic vegetation: A model analysis. In Marine benthic vegetation: Recent changes and the effects of eutrophication, ed. W. Schramm and P.H. Nienhuis, 79–113. Berlin: Springer.CrossRefGoogle Scholar
  29. Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.CrossRefGoogle Scholar
  30. Engelsen, A., K. Sundbäck, and S. Hulth. 2010. Links between bottom-water anoxia, the polychaete Nereis diversicolor, and the growth of green-algal mats. Estuaries and Coasts 33: 1365–1376.CrossRefGoogle Scholar
  31. Enriquez, S., C.M. Duarte, and K. Sand-Jensen. 1993. Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content. Oecologia 94: 457–471.CrossRefGoogle Scholar
  32. Flindt, M.R., L. Kamp-Nielsen, J.C. Marques, M.A. Pardal, M. Bocci, G. Bendoricchio, J. Salomonsen, S.N. Nielsen, and S.E. Jorgensen. 1997. Description of the three shallow estuaries: Mondego River (Portugal), Roskilde Fjord (Denmark) and the Lagoon of Venice (Italy). Ecological Modeling 102: 17–31.CrossRefGoogle Scholar
  33. Flindt, M.R., J. Neto, C.L. Amos, M.A. Pardal, A. Bergamasco, C.B. Pedersen, and F.Ø. Andersen. 2004. Plant bound nutrient transport: Mass transport in estuaries and lagoons. In Estuarine nutrient cycling: The influence of primary producers, ed. S.L. Nielsen, G.T. Banta, and M.F. Pedersen, 93–128. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  34. Fox, S.E., E. Stieve, I. Valiela, J. Hauxwell, and J. McClelland. 2008. Macrophyte abundance in Waquoit Bay: Effects of land-derived nitrogen loads on seasonal and multi-year biomass patterns. Estuaries and Coasts 31: 532–541.CrossRefGoogle Scholar
  35. Franz, D.R., and I. Friedman. 2002. Effects of macroalgal mat (Ulva lactuca) on estuarine sand flat copepods: An experimental study. Journal of Experimental Marine Biology and Ecology 271: 209–226.CrossRefGoogle Scholar
  36. Gacia, E., M.M. Littler, and D.S. Littler. 1996a. The relationships between morphology and photosynthetic parameters within the polymorphic genus Caulerpa. Journal of Experimental Marine Biology and Ecology 204: 209–224.CrossRefGoogle Scholar
  37. Gacia, E., C. Rodriguez-Prieto, O. Delgado, and E. Ballesteros. 1996b. Seasonal light and temperature responses of Caulerpa taxifolia from the northwestern Mediterranean. Aquatic Botany 53: 215–225.CrossRefGoogle Scholar
  38. Gallegos, C.L., P.J. Werdell, and C.R. McClain. 2011. Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research 16: C00H08. doi:10.1029/2011JC007160.Google Scholar
  39. Gayol, P., C. Falconetti, J.R.M. Chisholm, and J.M. Jaubert. 1995. Metabolic responses of low-temperature-acclimated Caulerpa taxifolia (Chlorophyta) to rapidly elevated temperature. Botanica Marina 38: 61–67.CrossRefGoogle Scholar
  40. Gordon, D.M., P.B. Bird, and A.J. McComb. 1980. The effect of light, temperature and salinity on photosynthesis rates of an estuarine Cladophora. Botanica Marina 23: 749–755.Google Scholar
  41. Gray, J.S., R.S. Wu, and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249–279.CrossRefGoogle Scholar
  42. Grillini, C.L., and L. Lazzara. 1978. Ciclo annuale del fitoplancton nelle acque costiere del Parco Naturale della Maremma. I. Variazioni quantitive. Giornale Botanico Italiano 112: 157–173.CrossRefGoogle Scholar
  43. Haritonidis, S. 1996. Greece. In Marine benthic vegetation: Recent changes and the effects of eutrophication, ed. W. Schramm and P.H. Nienhuis, 403–420. Berlin: Springer.CrossRefGoogle Scholar
  44. Hauxwell, J., and I. Valiela. 2004. Effects of nutrient loading on shallow seagrass-dominated coastal systems: Patterns and processes. In Estuarine nutrient cycling: The influence of primary producers, ed. S.L. Nielsen, G.T. Banta, and M.F. Pedersen, 59–92. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  45. Hauxwell, J., J. McClelland, P.J. Behr, and I. Valiela. 1998. Relative importance of grazing and nutrient controls of macroalgal biomass in three temperate shallow estuaries. Estuaries 21: 347–360.CrossRefGoogle Scholar
  46. Hauxwell, J., J. Cebrian, C. Furlong, and I. Valiela. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82: 1007–1022.CrossRefGoogle Scholar
  47. Hauxwell, J., J. Cebrian, and I. Valiela. 2003. Eelgrass Zostera marina loss in temperate estuaries: Relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series 247: 59–73.CrossRefGoogle Scholar
  48. Heck, K.L., J.R. Pennock, J.F. Valentine, L.D. Coen, and S.A. Sklenar. 2000. Effects of nutrient enrichment and small predator density on seagrass ecosystems. An experimental assessment. Limnology and Oceanography 45: 1041–1057.CrossRefGoogle Scholar
  49. Heck, K.L., J.F. Valentine, J.R. Pennock, G. Chaplin, and P.M. Spitzer. 2006. Effects of nutrient enrichment and grazing on shoalgrass (Halodule wrightii) and its epiphytes: Results of a field experiment. Marine Ecology Progress Series 326: 145–156.CrossRefGoogle Scholar
  50. Henley, W.J. 1992. Growth and photosynthesis of Ulva rotundata (Chlorophyta) as a function of temperature and square wave irradiance in indoor culture. Journal of Phycology 28: 625–634.CrossRefGoogle Scholar
  51. Henley, W.J., G. Levavasseur, L.A. Franklin, S.T. Lindley, J. Ramus, and C.B. Osmond. 1991. Diurnal responses of photosynthesis and fluorescence in Ulva rotundata acclimated to sun and shade in outdoor culture. Marine Ecology Progress Series 75: 19–28.CrossRefGoogle Scholar
  52. Hessing-Lewis, M.L., S.D. Hacker, B.A. Menge, and S.S. Rumrill. 2011. Context-dependent eelgrass–macroalgae interactions along an estuarine gradient in the Pacific Northwest, USA. Estuaries and Coasts 34: 1169–1181.CrossRefGoogle Scholar
  53. Höffle, H., M.S. Thomsen, and M. Holmer. 2011. High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuarine, Coastal and Shelf Science 92: 35–46.CrossRefGoogle Scholar
  54. Holmer, M., and R.M. Nielsen. 2007. Effects of filamentous algal mats on sulfide invasion in eelgrass (Zostera marina). Journal of Experimental Biology and Ecology 353: 245–252.CrossRefGoogle Scholar
  55. Hughes, J.E., L.A. Deegan, J.C. Wyda, M.J. Weaver, and A. Wright. 2002. The effects of eelgrass habitat loss on estuarine fish communities of Southern New England. Estuaries 25: 235–249.CrossRefGoogle Scholar
  56. Hughes, A.R., K.J. Bando, L.F. Rodriguez, and S.L. Williams. 2004. Relative effects of grazers and nutrients on seagrasses: A meta-analysis approach. Marine Ecology Progress Series 282: 87–99.CrossRefGoogle Scholar
  57. Iizumi, H., and A. Hattori. 1982. Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. III: The kinetics of nitrogen uptake. Aquatic Botany 12: 245–256.CrossRefGoogle Scholar
  58. Israel, A.A., M. Friedlander, and A. Neori. 1995. Biomass yield, photosynthesis and morphological expression of Ulva lactuca. Botanica Marina 38: 297–302.CrossRefGoogle Scholar
  59. Johansson, G., and P. Snoeijs. 2002. Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Marine Ecology Progress Series 244: 63–72.CrossRefGoogle Scholar
  60. Koenings, J.P., and J.A. Edmundson. 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: Effects of yellow color and turbidity. Limnology and Oceanography 36: 91–105.CrossRefGoogle Scholar
  61. Krause-Jensen, D., A.L. Middelboe, J. Carstensen, and K. Dahl. 2007a. Spatial patterns of macroalgal abundance in relation to eutrophication. Marine Biology 152: 25–36.CrossRefGoogle Scholar
  62. Krause-Jensen, D., J. Carstensen, and K. Dahl. 2007b. Total and opportunistic algal cover in relation to environmental variables. Marine Pollution Bulletin 55: 114–125.CrossRefGoogle Scholar
  63. Krause-Jensen, D., S. Sagert, H. Schubert, and C. Boström. 2008. Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecological Indicators 8: 515–529.CrossRefGoogle Scholar
  64. Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.CrossRefGoogle Scholar
  65. Kristensen, E., S.I. Ahmed, and A.H. Devol. 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest? Limnology and Oceanography 40: 1430–1437.CrossRefGoogle Scholar
  66. Lavery, P.S., R.J. Lukatelich, and A.J. McComb. 1991. Changes in the biomass and species composition of macroalgae in a eutrophic estuary. Estuarine, Coastal and Shelf Science 33: 1–22.CrossRefGoogle Scholar
  67. Lee, V., and S. Olsen. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries 8: 191–202.CrossRefGoogle Scholar
  68. Levavasseur, G., G.E. Edwards, C.B. Osmond, and J. Ramus. 1991. Inorganic carbon limitation of photosynthesis in Ulva rotundata (Chlorophyta). Journal of Phycology 27: 667–672.CrossRefGoogle Scholar
  69. Liu, S.L., W.L. Wang, D.T. Dy, and C.C. Fu. 2005. The effect of ulvoid macroalgae on the inorganic carbon utilization by an intertidal seagrass Thalassia hemprichii. Botanical Bulletin of Academia Sinica 46: 197–203.Google Scholar
  70. Malone, T.C. 1977. Environmental regulation of phytoplankton productivity in the lower Hudson Estuary. Estuarine and Coastal Marine Science 5: 157–171.CrossRefGoogle Scholar
  71. Malta, E., and J.M. Verschuure. 1997. Effects of environmental variables on between-year variation of Ulva growth and biomass in a eutrophic brackish lake. Journal of Sea Research 38: 71–84.CrossRefGoogle Scholar
  72. McComb, A.J., and R. Humphries. 1992. Loss of nutrients from catchments and their ecological impacts in the Peel-Harvey estuarine system, Western Australia. Estuaries 15: 529–537.CrossRefGoogle Scholar
  73. McGlathery, K.J., K. Sundbäck, and I.C. Anderson. 2007. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Marine Ecology Progress Series 348: 1–18.CrossRefGoogle Scholar
  74. Middelburg, J.J., K. Soetaert, P.M.J. Herman, and H.T.S. Boschker. 2004. Burial of nutrient in coastal sediments: The role of primary producers. In Estuarine nutrient cycling: The influence of primary producers, ed. S.L. Nielsen, G.T. Banta, and M.F. Pedersen, 217–230. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  75. Monbet, Y. 1992. Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macrotidal estuaries. Estuaries 15: 563–571.CrossRefGoogle Scholar
  76. Mvungi, E.F., T.J. Lyimo, and M. Björk. 2012. When Zostera marina is intermixed with Ulva, its photosynthesis is reduced by increased pH and lower light, but not by changes in light quality. Aquatic Botany 102: 44–49.CrossRefGoogle Scholar
  77. Nicholls, R.J., and C. Small. 2002. Improved estimates of coastal population and exposure to hazards released. Eos 83: 301–305.CrossRefGoogle Scholar
  78. Nielsen, S.L., K. Sand-Jensen, J. Borum, and O. Geertz-Hansen. 2002. Depth colonization of eelgrass (Zostera marina) and macroalgae as determined by water transparency in Danish coastal waters. Estuaries 25: 1025–1032.CrossRefGoogle Scholar
  79. Nixon, S.W., B. Buckley, S. Granger, and J. Bintz. 2001. Responses of very shallow marine ecosystems to nutrient enrichment. Human Ecological Risk Assessment 7: 1457–1481.CrossRefGoogle Scholar
  80. Norkko, J., E. Bonsdorff, and A. Norkko. 2000. Drifting algal mats as an alternative habitat for benthic invertebrates: Species-specific responses to a transient resource. Journal of Experimental Marine Biology and Ecology 248: 79–104.CrossRefGoogle Scholar
  81. Oberg, J. 2005. Model simulations of conditions suitable for the establishment of Enteromorpha sp. (Chlorophyta) macroalgal mats. Marine Biological Research 1: 97–106.CrossRefGoogle Scholar
  82. Orduña-Rojas, J., D. Robledo, and C.J. Dawes. 2002. Studies on the tropical agarophyte Gracilaria cornea J. Agardh (Rhodophyta, Gracilariales) from Yucatan Mexico. I. Seasonal physiological and biochemical responses. Botanica Marina 45: 453–458.Google Scholar
  83. Österling, M., and L. Pihl. 2001. Effects of filamentous green algal mats on benthic macrofaunal functional feeding groups. Journal of Experimental Marine Biology and Ecology 263: 159–183.CrossRefGoogle Scholar
  84. Paalme, T., J. Kotta, P. Kersen, G. Martin, H. Kukk, and K. Torn. 2011. Inter-annual variations in biomass of loose lying algae FurcellariaCoccotylus community: The relative importance of local versus regional environmental factors in the West Estonian Archipelago. Aquatic Botany 95: 146–152.CrossRefGoogle Scholar
  85. Peckol, P., and J.S. Rivers. 1995. Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan) to environmental disturbances associated with eutrophication. Journal of Experimental Marine Biology and Ecology 190: 1–16.CrossRefGoogle Scholar
  86. Pedersen, M.F., and J. Borum. 1996. Phosphorus recycling in eelgrass (Zostera marina L.). In Biology and ecology of shallow coastal waters, ed. A. Eleftheriou, 45–50. Chicago: Olsen og Olsen.Google Scholar
  87. Pedersen, M.F., and J. Borum. 1997. Nutrient control of estuarine macroalgae: Growth strategy and the balance between nitrogen requirements and uptake. Marine Ecology Progress Series 161: 155–163.CrossRefGoogle Scholar
  88. Pedersen, M.F., J. Borum, and F.L. Fotel. 2010. Phosphorus dynamics and limitation of fast- and slow-growing temperate seaweeds in Oslofjord, Norway. Marine Ecology Progress Series 399: 103–115.CrossRefGoogle Scholar
  89. Pierson, D.C., S. Kratzer, N. Strömbeck, and B. Håkansson. 2008. Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea. Remote Sensing of Environment 112: 668–680.CrossRefGoogle Scholar
  90. Piñon-Gimate, A., F. Paez-Osuna, E. Serviere-Zaragoza, and M. Casas-Valdez. 2012. Macroalgal blooms in coastal lagoons of the Gulf of California eco-region: A summary of current knowledge. Botanica Marina 55: 129–142.CrossRefGoogle Scholar
  91. Råberg, S., and L. Kautsky. 2007. A comparative biodiversity study of the associated fauna of perennial fucoids and filamentous algae. Estuarine, Coastal and Shelf Science 73: 249–258.CrossRefGoogle Scholar
  92. Rasmussen, J.R., B. Olesen, and D. Krause-Jensen. 2012. Effects of filamentous macroalgae mats on growth and survival of eelgrass, Zostera marina, seedlings. Aquatic Botany 99: 41–48.CrossRefGoogle Scholar
  93. Rasmussen, J.R., M.F. Pedersen, B. Olesen, S.L. Nielsen, and T.M. Pedersen. 2013. Temporal and spatial dynamics of ephemeral drift-algae in eelgrass, Zostera marina, beds. Estuarine, Coastal and Shelf Science 119: 167–175.CrossRefGoogle Scholar
  94. Rinne, H., S. Salovius-Lauren, and J. Mattila. 2011. The occurrence and depth penetration of macroalgae along environmental gradients in the northern Baltic Sea. Estuarine, Coastal and Shelf Science 94: 182–191.CrossRefGoogle Scholar
  95. Romero, J., F.X. Neill, A. Martinez-Arroyo, M. Perez, and J. Camp. 1996. The Spanish Mediterranean Coasts. In Marine benthic vegetation: Recent changes and the effects of eutrophication, ed. W. Schramm and P.H. Nienhuis, 295–304. Berlin: Springer.CrossRefGoogle Scholar
  96. Rosenberg, G., and J. Ramus. 1982. Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): Photosynthesis and antenna composition. Marine Ecology Progress Series 8: 233–241.CrossRefGoogle Scholar
  97. Salomonsen, J., M.R. Flindt, and O. Geertz-Hansen. 1997. Significance of advective transport of Ulva lactuca for a biomass budget on a shallow water location. Ecological Modeling 102: 129–132.CrossRefGoogle Scholar
  98. Sand-Jensen, K. 1988. Photosynthetic responses of Ulva lactuca at very low light. Marine Ecology Progress Series 50: 195–201.CrossRefGoogle Scholar
  99. Sand-Jensen, K., and J. Borum. 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.CrossRefGoogle Scholar
  100. Sfriso, A., B. Pavoni, A. Marcomini, and A.A. Orio. 1992. Macroalgae, nutrient cycles and pollutants in the Lagoon of Venice. Estuaries 15: 517–528.CrossRefGoogle Scholar
  101. Sfriso, A., C. Facca, and P.F. Ghetti. 2003a. Temporal and spatial changes of macroalgae and phytoplankton in a Mediterranean coastal area: The Venice lagoon as a case study. Marine Environmental Research 56: 617–636.CrossRefGoogle Scholar
  102. Sfriso, A., C. Facca, S. Ceoldo, S. Silvestri, and P.F. Ghetti. 2003b. Role of macroalgal biomass and clam fishing on spatial and temporal changes in N and P sedimentary pools in the central part of the Venice lagoon. Oceanologica Acta 26: 3–13.CrossRefGoogle Scholar
  103. Shepherd, S.A., J.E. Watson, H.B.S. Womersley, and J.M. Carey. 2009. Long-term changes in macroalgal assemblages after increased sedimentation and turbidity in Western Port, Victoria, Australia. Botanica Marina 52: 195–206.CrossRefGoogle Scholar
  104. Smith, S.V. 1979. Responses of Kaneohe Bay, Hawaii, to relaxation of sewage stress. In Estuaries and nutrients, ed. B.J. Neilson and L.E. Cronin, 391–410. Clifton: Humana.Google Scholar
  105. Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis, 2nd edn. Bulletin of the Fisheries Research Board of Canada 167:1–310.Google Scholar
  106. Tagliapietra, D., M. Pavan, and C. Wagner. 1998. Macrobenthic community changes related to eutrophication in Palude della Rosa (Venetian Lagoon, Italy). Estuarine, Coastal and Shelf Science 47: 217–226.CrossRefGoogle Scholar
  107. Taylor, D.I., S.W. Nixon, S. Granger, and B. Buckley. 1995a. Nutrient limitation and the eutrophication of coastal lagoons. Marine Ecology Progress Series 127: 235–244.CrossRefGoogle Scholar
  108. Taylor, D.I., S.W. Nixon, S.L. Granger, B.A. Buckley, J.P. McMahon, and H.J. Lin. 1995b. Responses of coastal lagoon plant communities to different forms of nutrient enrichment—a mesocosm experiment. Aquatic Botany 52: 19–34.CrossRefGoogle Scholar
  109. Taylor, D.I., S.W. Nixon, S.L. Granger, and B.A. Buckley. 1999. Responses of coastal lagoon plant communities to levels of nutrient enrichment: A mesocosm study. Estuaries 22: 1041–1056.CrossRefGoogle Scholar
  110. Teichberg, M., S.E. Fox, Y.S. Olsen, I. Valiela, P. Martinetto, O. Iribarne, E. Yuriko Muto, M.A.V. Petti, T.N. Corbisier, M. Soto-Jimenez, F. Paez-Osuna, P. Castro, H. Freitas, A. Zitelli, M. Cardinaletti, and D. Tagliapietra. 2010. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp. Global Change Biology 16: 2624–2637.Google Scholar
  111. Tomasky, G., J. Barak, I. Valiela, P. Behr, L. Soucy, and K. Foreman. 1999. Nutrient limitation of phytoplankton growth in Waquoit Bay, Massachusetts, USA: A nutrient enrichment study. Aquatic Ecology 33: 147–155.CrossRefGoogle Scholar
  112. Trimmer, M., D.B. Nedwell, D.B. Sivyer, and S.J. Malcolm. 2000. Seasonal organic mineralization and denitrification in intertidal sediments and their relationship to the abundance of Enteromorpha sp. and Ulva sp. Marine Ecology Progress Series 203: 67–80.CrossRefGoogle Scholar
  113. Valiela, I. 2006. Global coastal change. Malden, MA, USA: Blackwell Publishing.Google Scholar
  114. Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.CrossRefGoogle Scholar
  115. Valiela, I., G. Tomasky, J. Hauxwell, M.L. Cole, J. Cebrian, and K.D. Kroeger. 2000a. Operationalizing sustainability: Management and risk assessment of land-derived nitrogen loads to estuaries. Ecological Applications 10: 1006–1023.CrossRefGoogle Scholar
  116. Valiela, I., M. Geist, J. McClelland, and G. Tomasky. 2000b. Nitrogen loading from watersheds to estuaries: Verification of the Waquoit Bay nitrogen loading model. Biogeochemistry 49: 277–293.CrossRefGoogle Scholar
  117. Valiela, I., S. Mazzilli, J.L. Bowen, K.D. Kroeger, M.L. Cole, G. Tomasky, and T. Isaji. 2004. ELM, an estuarine nitrogen loading model: Formulation and verification of predicted concentrations of dissolved inorganic nitrogen. Water, Air, and Soil Pollution 157: 365–391.CrossRefGoogle Scholar
  118. Vergara, J.J., J.L. Perez-Llorens, G. Peralta, I. Hernandez, and F.X. Niell. 1997. Seasonal variation of photosynthetic performance and light attenuation in Ulva canopies from Palmones River Estuary. Journal of Phycology 33: 773–779.CrossRefGoogle Scholar
  119. Vergara, J.J., M. Sebastian, J. Lucas Perez-Llorens, and I. Hernandez. 1998. Photoacclimation of Ulva rigida and U. rotundata (Chlorophyta) arranged in canopies. Marine Ecology Progress Series 165: 283–292.CrossRefGoogle Scholar
  120. Wall, C.C., B.J. Peterson, and C.J. Gobler. 2011. The growth of estuarine resources (Zostera marina, Mercenaria mercenaria, Crassostrea virginica, Argopecten irradians, Cyprinodon variegatus) in response to nutrient loading and enhanced suspension feeding by adult shellfish. Estuaries and Coasts 34: 1262–1277.CrossRefGoogle Scholar
  121. Xu, J., K. Yin, J.H.W. Lee, H. Liu, A.Y.T. Ho, X. Yuan, and P.J. Harrison. 2010. Long-term and seasonal changes in nutrients, phytoplankton biomass, and dissolved oxygen in Deep Bay, Hong Kong. Estuaries and Coasts 33: 399–416.CrossRefGoogle Scholar
  122. Zar, J.H. 1984. Biostatistical analysis, 2nd ed. Englewood Cliffs: Prentice-Hall.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2013

Authors and Affiliations

  • Just Cebrian
    • 1
    • 2
  • Devin Corcoran
    • 3
  • Julien Lartigue
    • 4
  1. 1.Dauphin Island Sea LabDauphin IslandUSA
  2. 2.Department of Marine SciencesUniversity of South AlabamaMobileUSA
  3. 3.Boston University Marine ProgramBostonUSA
  4. 4.National Oceanic and Atmospheric AdministrationStennis Space CenterUSA

Personalised recommendations