Estuaries and Coasts

, Volume 37, Supplement 1, pp 74–90 | Cite as

Linking Hydrogeomorphology and Food Webs in Intertidal Creeks

Article

Abstract

Intertidal creeks are shallow, photic ecosystems that potentially serve as sources of prey for many predators within estuaries. In a previous study, the link between nekton community structure and hydrogeomorphological variables for eight intertidal creeks was assessed for North Inlet estuary, South Carolina. Herein, we advance their findings through ecological network analysis of foodweb structure within two creeks and infer nekton trophic relationships to geomorphology and potential influences of hydrological condition and change. A summer network of a shallow, wide creek demonstrated greater carbon recycling, trophic efficiency and flow through consumers than that of a deep, narrow creek representing the same period. We infer greater export of nekton carbon from the former creek. These results were supported by analyses of nekton effective trophic levels and guilds across the eight creeks. Shallow, wide intertidal creeks appear to provide both physical and foodweb attributes that promote good nekton habitat relative to deeper and narrower creeks. Human alterations to flow regimes and sea-level rise have the ability to affect geomorphology of individual creeks and the landscape as a whole. These changes in turn have the potential to alter food webs of intertidal creeks and their ability to serve as sources of food for the larger estuary.

Keywords

Guild Nekton Network analysis Trophic 

References

  1. Allen, D.M., S.K. Service, and M.V. Ogburn. 1992. Factors influencing the collection efficiency of estuarine fishes. Transactions of the American Fisheries Society 121: 234–244.CrossRefGoogle Scholar
  2. Allen, D.M., W.S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of salt-marsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42: 37–50.CrossRefGoogle Scholar
  3. Allen, D.M., S.S. Haertel-Borer, B.J. Miller, D. Bushek, and R.F. Dame. 2007. Geomorphological determinants of nekton use of intertidal salt marsh creeks. Marine Ecology Progress Series 329: 57–71.CrossRefGoogle Scholar
  4. Allen, D.M., V. Ogburn-Matthews, T. Buck, and E.M. Smith. 2008. Mesozooplankton responses to climate change and variability in a southeastern U.S. Estuary (1981–2003). Journal of Coastal Research 55: 95–110.CrossRefGoogle Scholar
  5. Allesina, S., and C. Bondavalli. 2003. Steady state ecosystem flow networks: a comparison between balancing procedures. Ecological Modelling 165: 221–229.CrossRefGoogle Scholar
  6. Allesina, S., and C. Bondavalli. 2004. WAND: an ecological network analysis user-friendly tool. Enviromental Modeling & Software 19: 337–340.CrossRefGoogle Scholar
  7. Archambault, J., and R.J. Feller. 1991. Diel variations in gut fullness of juvenile spot, Leiostomus xanthurus (Pisces). Estuaries 14: 94–101.CrossRefGoogle Scholar
  8. Asmus, M.L., and H.N. McKellar Jr. 1989. Network analysis of the North Inlet salt marsh ecosystem. In Network analysis in marine ecology: methods and applications, ed. F. Wulff, J.G. Field, and K.H. Mann, 206–219. Berlin: Springer-Verlag. FGR.Google Scholar
  9. Baird, D., and R.E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecological Monographs 59: 329–364.CrossRefGoogle Scholar
  10. Baird, D., and R.E. Ulanowicz. 1993. Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Marine Ecology Progress Series 99: 221–237.CrossRefGoogle Scholar
  11. Baird, D., J. Luczkovich, and R.R. Christian. 1998. Assessment of spatial and temporal variability in ecosystem attributes of St Marks National Wildlife Refuge, Apalachee Bay, Florida. Estuarine, Coastal and Shelf Science 47: 329–249.CrossRefGoogle Scholar
  12. Baird, D., R.R. Christian, C.H. Peterson, and G.A. Johnson. 2004. Consequences of hypoxia on estuarine ecosystem function: energy diversion from consumers to microbes. Ecological Applications 14: 805–822.CrossRefGoogle Scholar
  13. Banse, K., and S. Mosher. 1980. Adult body mass and annual production/biomass relationships of field populations. Ecological Monographs 50: 355–379.CrossRefGoogle Scholar
  14. Bell, S.S., and B.C. Coull. 1978. Field evidence that shrimp predation regulates meiofauna. Oecologia 35: 141–148.CrossRefGoogle Scholar
  15. Bretsch, K., and D.M. Allen. 2006. Tidal migrations of nekton in salt marsh creeks. Estuaries and Coasts 29: 474–486.CrossRefGoogle Scholar
  16. Christensen, V., and D. Pauly. 1992. ECOPATH II—a software for balancing steady state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169–185.CrossRefGoogle Scholar
  17. Christian, R.R., and J.J. Luczkovich. 1999. Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecological Modelling 117: 99–124.CrossRefGoogle Scholar
  18. Christian, R.R., J.K. Dame, G. Johnson, C.H. Peterson, and D. Baird. 2004. Monitoring and modeling of the Neuse River Estuary, phase 2: Functional assessment of environmental phenomena through network analysis. UNC-WRRI Report No. 343-E. Raleigh, NC. 93 pp.Google Scholar
  19. Christian, R.R., D. Baird, J. Luczkovich, J.C. Johnson, U. Scharler, and R.E. Ulanowicz. 2005. Role of network analysis in comparative ecosystem ecology of estuaries. In Complexity in aquatic food webs: an ecosystem approach, ed. A. Belgrano, U.M. Scharler, J. Dunne, and R.E. Ulanowicz, 25–40. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  20. Christian, R.R., M.M. Brinson, J.K. Dame, G. Johnson, C.H. Peterson, and D. Baird. 2009. Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary. Ecological Modelling 220: 3113–3122.CrossRefGoogle Scholar
  21. Cohen, J.E., R. Beaver, S. Cousins, D. DeAngelis, L. Goldwasser, K. Heong, R. Holt, A. Kohn, J. Lawton, N. Martinez, R. O’Malley, L. Page, B. Patten, S. Pimm, G. Polis, M. Rejimanek, T. Schoener, K. Schoenly, W.G. Sprules, J. Teal, R. Ulanowicz, P. Warren, H. Wilbur, and P. Yodzis. 1993. Improving food webs. Ecology 74: 252–258.CrossRefGoogle Scholar
  22. D’Alpaos, A. 2011. The mutual influence of biotic and abiotic components of long-term ecomorphodynamic evolution of salt-marsh systems. Geomorphology 126: 269–278.CrossRefGoogle Scholar
  23. Dame, J.K. 2005. Evaluation of ecological network analysis for ecosystem-based management. Ph.D. Dissertation, East Carolina University, Greenville, NC.Google Scholar
  24. Dame, J.K., and R.R. Christian. 2006. Uncertainty and the use of network analysis for ecosystem-based fishery management. Fisheries 31: 331–341.CrossRefGoogle Scholar
  25. Dame, R.F., J.D. Spurrier, T.M. Williams, B. Kjerve, R.G. Zingmark, T.G. Wolaver, T.H. Chrzanowski, H.N. McKellar, and F.J. Vernberg. 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA. Marine Ecology Progress Series 72: 153–166.CrossRefGoogle Scholar
  26. Dame, R.F., D. Childers, and E. Koepfler. 1992. A geohydrolic continuum theory for the spatial and temporal evolution of marsh-estuarine ecosystems. Netherlands Journal of Sea Research 30: 63–72.CrossRefGoogle Scholar
  27. Dame, R.F., D. Bushek, D. Allen, A. Lewitus, D. Edwards, E. Koepfler, and L. Gregory. 2002. Ecosystem response to bivalve density reduction: management implications. Aquatic Ecology 36: 51–65.CrossRefGoogle Scholar
  28. Day, J.W., R.R. Christian, D.M. Boesch, A. Yáñez-Arancibia, J. Morris, R.R. Twilley, L. Naylor, L. Schaffner, and C. Stevenson. 2008. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts 31: 477–491.CrossRefGoogle Scholar
  29. Fagherazzi, S., and D.J. Furbish. 2001. On the shape and widening of salt marsh creeks. Journal of Geophysical Research 106: 991–1003.CrossRefGoogle Scholar
  30. Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D’Alpaos, J. van de Koppel, J.M. Rybczyk, E. Reyes, C. Craft, and J. Clough. 2012. Numerical models of salt marsh evolution: ecological, geomorphic and climatic factors. Reviews of Geophysics 50: RG1002, doi:10.1029/2011RG000359.
  31. Feller, R.J., B.C. Coull, and B.T. Hentschel. 1990. Meiobenthic copepods: tracers of where juvenile Leiostomus xanthurus (Pisces) feed. Canadian Journal of Fish and Aquatic Sciences 47: 1913–1919.CrossRefGoogle Scholar
  32. Finn, J.T. 1976. Measures of ecosystem structure and function derived from analysis of flows. Journal of Theoretical Biology 56: 363–380.CrossRefGoogle Scholar
  33. Higgins, R.P., and H. Thiel. 1988. Introduction to the study of meiofauna. Washington, DC: Smithsonian Institution Press.Google Scholar
  34. Hildebrand, S.F., and W.C. Schroeder. 1928. Fishes of the Chesapeake Bay. Bulletin of the United States Bureau of Fisheries 43(1): 1–366.Google Scholar
  35. Hughes, Z.J., D.M. Fitzgerald, C.A. Wilson, S.C. Pennings, K. Wieski, and A. Mahadevan. 2009. Rapid headward erosion of marsh creeks in response to sea level rise. Geophysical Research Letters 36: L03602, doi:10.1029/2008GL036000.
  36. Johnson, J. 2007. Maryland Chesapeake Bay Program mesozooplankton monitoring surveys data dictionary. USEPA Chesapeake Bay Program Office. Annapolis, Maryland. http://www.chesapeakebay.net/documents/3684/6_mdmzdoc.pdf.
  37. Kimball, M.E., and K.W. Able. 2007. Tidal utilization of nekton in Delaware Bay restored and reference intertidal salt marsh creeks. Estuaries and Coasts 30: 1075–1087.CrossRefGoogle Scholar
  38. Kneib, R.T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology: An Annual Review 35: 163–220.Google Scholar
  39. Kneib, R.T. 2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 267–291. Dordrecht: Kluwer Academic.Google Scholar
  40. Mackinson, S., G. Daskalov, J.J. Heymans, S. Neira, H. Arancibia, M. Zetina-Rejón, H.Q. Cheng, M. Coll, F. Arreguin-Sanchez, K. Keeble, and L. Shannon. 2009. Which forcing factors fit? Using ecosystem models to investigate the relative influence of fishing and changes in primary productivity on the dynamics of marine ecosystems. Ecological Modelling 220: 2972–2987.CrossRefGoogle Scholar
  41. Michener, W.K., E.R. Blood, K.L. Bildstein, M.M. Brinson, and L.R. Gardner. 1997. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications 7: 770–801.CrossRefGoogle Scholar
  42. Nixon, S.W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.CrossRefGoogle Scholar
  43. Novakowski, K.I., R. Torres, L.R. Gardner, and G. Voulgaris. 2004. Geomorphic analysis of tidal creek networks. Water Resources Research 40, WO5401, doi:10.1029/2003WR002722.
  44. Odum, W.E., and E.J. Heald. 1975. Trophic analyses of an estuarine mangrove community. Bulletin of Marine Science 22: 671–738.Google Scholar
  45. Paine, R.T. 1988. Food webs: road maps of interaction or grist for theoretical development? Ecology 69: 1648–1654.CrossRefGoogle Scholar
  46. Pinckney, J., and R.G. Zingmark. 1993. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16: 887–897.CrossRefGoogle Scholar
  47. Potthoff, M.T., and D.M. Allen. 2003. Site fidelity, home range, and tidal migrations of juvenile pinfish, Lagodon rhomboides, in salt marsh creeks. Environmental Biology of Fishes 67: 231–240.CrossRefGoogle Scholar
  48. Rozas, L.P., C.C. McIvor, and W.E. Odum. 1988. Intertidal rivulets and creekbanks: corridors between tidal creeks and marshes. Marine Ecology Progress Series 47: 303–307.CrossRefGoogle Scholar
  49. Scotti, M., S. Allesina, C. Bondavalli, A. Bodini, and L.G. Abarca-Arenas. 2006. Effective trophic positions in ecological acyclic networks. Ecological Modelling 198: 495–505.CrossRefGoogle Scholar
  50. Ulanowicz, R.E. 1983. Identifying the structure of cycling in ecosystems. Mathematical Biosciences 65: 219–237.CrossRefGoogle Scholar
  51. Ulanowicz, R.E. 1986. Growth and development: ecosystem phenomenology. New York: Springer.CrossRefGoogle Scholar
  52. Ulanowicz, R.E. 1987. NETWRK4: a package of computer algorithms to analyze ecological flow networks. Solomons: University of Maryland, Chesapeake Bay Laboratory.Google Scholar
  53. Ulanowicz, R.E. 1995. Ecosystem trophic foundations: Lindeman exonerate. In Complex ecology: the part–whole relationship in ecosystems, ed. B.C. Patten and S.E. Jorgensen, 549–560. Englewood Cliffs: Prentice Hall.Google Scholar
  54. Ulanowicz, R.E. 2004. Quantitative methods for ecological network analysis. Computational Biology and Chemistry 28: 321–339.CrossRefGoogle Scholar
  55. Ulanowicz, R.E., and W.M. Kemp. 1979. Toward canonical trophic aggregations. The American Naturalist 114: 871–883.CrossRefGoogle Scholar
  56. Wetz, M.S., K.C. Hayes, A.J. Lewitus, J.L. Wolny, and D.L. White. 2006. Variability in phytoplankton pigment biomass and taxonomic composition over tidal cycles in a salt marsh estuary. Marine Ecology Progress Series 320: 109–120.CrossRefGoogle Scholar
  57. Wulff, F., J.G. Field, and K.H. Mann (eds.). 1989. Network analysis in marine ecology: methods and applications. Berlin: Springer-Verlag. FGR.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2013

Authors and Affiliations

  1. 1.Biology DepartmentEast Carolina UniversityGreenvilleUSA
  2. 2.Baruch Marine Field LabUniversity of South CarolinaGeorgetownUSA

Personalised recommendations