Skip to main content

Influence of Wind-Driven Inundation and Coastal Geomorphology on Sedimentation in Two Microtidal Marshes, Pamlico River Estuary, NC

Abstract

Marsh sediment accumulation is predominately a combination of in situ organic accumulation and mineral sediment input during inundation. Within the Pamlico River Estuary (PRE), marsh inundation is dependent upon event (e.g., storms) and seasonal wind patterns due to minimal astronomical tides (<10 cm). A better understanding of the processes controlling sediment deposition and, ultimately, marsh accretion is needed to forecast marsh sustainability with changing land usage, climate, and sea level rise. This study examines marsh topography, inundation depth, duration of inundation, and wind velocity to identify relationships between short-term deposition (tile-based) and long-term accumulation (210Pb and 137Cs) recorded within and adjacent to the PRE. The results of this study indicate (1) similar sedimentation patterns between the interior marsh and shore-side marsh at different sites regardless of elevation, (2) increased sedimentation (one to two orders of magnitude, 0.04–4.54 g m−2 day−1) within the interior marsh when the water levels exceeded the adjacent topography (e.g., storm berm), and (3) that short-term sea level changes can have direct effects on sediment delivery to interior marshes in wind-driven estuarine systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Amein, M., and D.S. Airan. 1976. Mathematical modeling of circulation and hurricane surge in Pamlico Sound, North Carolina. Raleigh, NC: NC Sea Grant Program.

    Google Scholar 

  • Appleby, P.G., and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.

    CAS  Article  Google Scholar 

  • Bellucci, L.G., M. Frignani, J.K. Cochran, S. Albertazzi, L. Zaggia, G. Cecconi, and H. Hopkins. 2007. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon—links to flooding frequency and climate change. Journal of Environmental Radioactivity 97: 85–102.

    CAS  Article  Google Scholar 

  • Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries 12: 300–317.

    CAS  Article  Google Scholar 

  • Cahoon, D.R., J.W. Day, D.J. Reed, and R.S. Young (eds.). 1998. Global climate change and sea-level rise: estimating the potential for submergence of coastal wetlands. Washington, DC: USGS, Biological Resources Division.

    Google Scholar 

  • Cahoon, D.R., and D.J. Reed. 1995. Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. Journal of Coastal Research 11: 357–369.

    Google Scholar 

  • Cahoon, D.R., and R. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland II. Feldspar marker horizon technique. Estuaries and Coasts 12: 260–268.

    Article  Google Scholar 

  • Callaway, J.C., R.D. DeLaune, and W.H. Patrick. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13: 181–191.

    Google Scholar 

  • Childers, D.L., and J.W. Day. 1990. Marsh–water column interactions in 2 Louisiana estuaries. 1. Sediment dynamics. Estuaries and Coasts 13: 393–403.

    Article  Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science 50: 315–331.

    Article  Google Scholar 

  • Ciavola, P., C. Organo, L.L. Vintro, and P.I. Mitchell. 2002. Sedimentation processes on intertidal areas of the Lagoon of Venice: identification of exceptional flood events (Acqua Alta) using radionuclides. Journal of Coastal Research 36: 139–147.

    Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    CAS  Article  Google Scholar 

  • Cowart, L., J.P. Walsh, and D.R. Corbett. 2010 Analyzing estuarine shoreline change: a case study of Cedar Island, North Carolina. Journal of Coastal Research 26(5): 817–830.

    Google Scholar 

  • Craft, C.B., E.D. Seneca, and S.W. Broome. 1993. Vertical accretion in microtidal regularly and irregularly flooded estuarine marshes. Estuarine, Coastal and Shelf Science 37: 371–386.

    CAS  Article  Google Scholar 

  • Darke, A.K., and J.P. Megonigal. 2003. Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands. Estuarine, Coastal and Shelf Science 57: 255–268.

    Article  Google Scholar 

  • Currin, C.A., P.C. Delano, and L.M. Valdes-Weaver. 2008. Utilization of a citizen monitoring protocol to assess the structure and function of natural and stabilized fringing salt marshes in North Carolina. Wetlands Ecology and Management 16(2): 97–118.

    Article  Google Scholar 

  • Day, J.W., F. Scarton, A. Rismondo, and D. Are. 1998. Rapid deterioration of a salt marsh in Venice Lagoon, Italy. Journal of Coastal Research 14: 583–590.

    Google Scholar 

  • Delaney, T.P., J.W. Webb, and T.J. Minello. 2000. Comparison of physical characteristics between created and natural estuarine marshes in Galveston Bay, Texas. Wetlands Ecology and Management 8: 343–352.

    Article  Google Scholar 

  • DeLaune, R.D., R.H. Baumann, and J.G. Gosselink. 1983. Relationships among vertical accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh. Journal of Sedimentary Research 53: 147–157.

    Google Scholar 

  • DeLaune, R.D., J.A. Nyman, and W.H. Patrick. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  • Dillard, S. 2008. Resuspension events and seabed dynamics in the Neuse River Estuary, NC. Master’s thesis, East Carolina University.

  • Flynn, W.W. 1968. The determination of low levels of polonium-210 in environmental materials. Analytical Chimica Acta 43: 221–227.

    CAS  Article  Google Scholar 

  • Frey, R.W., and P.B. Basan (eds.). 1978. Coastal salt marshes. New York: Springer.

    Google Scholar 

  • Friedrichs, C.T., and J.E. Perry. 2001. Tidal salt marsh morphodynamics. Journal of Coastal Research 27: 7–37.

    Google Scholar 

  • Giffin, D., and D.R. Corbett. 2003. Evaluation of sediment dynamics in coastal systems via short-lived radioisotopes. Journal of Marine Systems 42: 83–96.

    Article  Google Scholar 

  • Giorgi, F., Hewitson, B., Christiansen, J., Hulme, M., von Storch, H., Whetton, P., Jones, R., Mearns, L., Fu, C. (Eds.), 2001. Regional climate information—evaluation and projections. Cambridge: Cambridge University Press.

  • Goldenberg, S.B., C.W. Landsea, A.M. Mestas-Nuñez, and W.M. Gray. 2001. The recent increase in Atlantic hurricane activity: causes and implications. Science 293: 474–479.

    CAS  Article  Google Scholar 

  • Goodbred, S.L., and A.C. Hine. 1995. Coastal storm deposition: salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology 23: 679–682.

    Article  Google Scholar 

  • Hardaway, C.S. 1980. Shoreline erosion and its relationship to the geology of the Pamlico River Estuary. Master’s thesis, East Carolina University.

  • Hatton, R.S., R.D. DeLaune, and W.H. Patrick. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28: 494–502.

    Article  Google Scholar 

  • Hine, A.C. 1979. Mechanism of berm development and resulting beach growth along a barrier spit complex. Sedimentology 26: 333–351.

    Article  Google Scholar 

  • Heiri, O., A.F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Horton, B.P., D.R. Corbett, S.J. Culver, R.J. Edwards, and C. Hillier. 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science 69: 381–394.

    Article  Google Scholar 

  • Jackson, N.L. 1995. Wind and waves: influence of local and non-local waves on mesoscale beach behavior in estuarine environments. Annals of the Association of American Geographers 85: 21–37.

    Google Scholar 

  • Kastler, J.A., and P.L. Wiberg. 1996. Sedimentation and boundary changes of Virginia salt marshes. Estuarine, Coastal and Shelf Science 42: 683–700.

    Article  Google Scholar 

  • Kemp, A.C., B.P. Horton, D.R. Corbett, S.J. Culver, R.J. Edwards, and O. van de Plassche. 2009. The relative utility of foraminifera and diatoms for reconstructing Late Holocene sea-level change in North Carolina, USA. Quaternary Research 71: 9–21.

    Article  Google Scholar 

  • Knutson, T.R., J.L. McBride, J. Chan, K. Emanuel, G. Hollar, C. Landsea, I. Held, J.P. Kossin, A.K. Srivastava, and M. Sugi. 2010. Tropical cyclones and climate change. Nature Geoscience 3:157–163.

    Google Scholar 

  • Kolker, A.S., S.L. Goodbred Jr., S. Hameed, and J.K. Cochran. 2009. High-resolution records of the response of coastal wetland systems to long-term and short-term sea-level variability. Estuarine, Coastal and Shelf Science 84: 493–508.

    CAS  Article  Google Scholar 

  • Kolker, A.S., and S. Hameed. 2007. Meteorologically driven trends in sea level rise. Geophysical Research Letters 34:23. doi:10.1029/2007GL031814.

    Google Scholar 

  • Le Hir, P., Y. Monbet, and F. Orvain. 2007. Sediment erodability in sediment transport modelling: can we account for biota effects? Continental Shelf Research 27: 1116–1142.

    Article  Google Scholar 

  • Leonard, L.A., and M.E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography 40: 1474–1484.

    Article  Google Scholar 

  • Luettich, R.A., S.D. Carr, J.V. Reynolds-Fleming, C.W. Fulcher, and J.E. McNinch. 2002. Semi-diurnal seiching in a shallow, micro-tidal lagoonal estuary. Continental Shelf Research 22: 1669–1681.

    Article  Google Scholar 

  • Mattheus, C.R., A.B. Rodriguez, B.A. McKee, and C.A. Currin. 2010. Impact of land-use change and hard structures on the evolution of fringing marsh shorelines. Estuarine, Coastal and Shelf Science 88(3): 365–376.

    Article  Google Scholar 

  • McCaffery, R.J., and J. Thomson. 1980. A record of the accumulation of sediment and trace metals in a Connecticut salt marsh. In Advances in geophysics, estuarine physics and chemistry: studies in Long Island Sound, ed. B. Saltzman, 165–237. New York: Academic.

    Chapter  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea levels. Ecology 83(10): 2869–2877.

    Article  Google Scholar 

  • Mitsch, W.J., and J.G. Gosselink. 2000. Wetlands. New York: Wiley.

    Google Scholar 

  • Möller, I., T. Spencer, J.R. French, D.J. Leggett, and M. Dixon. 1999. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science 49: 411–426.

  • Mwamba, M.J., and R. Torres. 2002. Rainfall effects on marsh sediment redistribution, North Inlet, South Carolina, USA. Marine Geology 189: 267–287.

    Article  Google Scholar 

  • Neubauer, S.C., I.C. Anderson, J.A. Constantine, and S.A. Kuehl. 2002. Sediment deposition and accretion in a Mid-Atlantic (U.S.A.) tidal freshwater marsh. Estuarine, Coastal and Shelf Science 54: 713–727.

    CAS  Article  Google Scholar 

  • Neumeier, U., and P. Ciavola. 2004. Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. Journal of Coastal Research 20: 435–447.

    Article  Google Scholar 

  • Nittrouer, C.A., R.W. Sternberg, R. Carpenter, and J.T. Bennett. 1979. The use of Pb-210 geochronology as a sedimentological tool: application to the Washington continental shelf. Marine Geology 31: 297–316.

    CAS  Article  Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. Delaune, and W.H. Patrick. 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.

    Article  Google Scholar 

  • Pasternack, G.B., and G.S. Brush. 1998. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries and Coasts 21: 407–415.

    Article  Google Scholar 

  • Pasternack, G.B., and G.S. Brush. 2001. Seasonal variations in sedimentation and organic content in five plant associations on a Chesapeake Bay tidal freshwater delta. Estuarine, Coastal and Shelf Science 53: 93–106.

    Article  Google Scholar 

  • Perillo, G.M.E., E.P.D. Santos, and M.C. Piccolo. 2003. An inexpensive instrument for sediment erosion-accumulation rate measurement in intertidal environments. Wetlands Ecology and Management 11: 195–198.

    Article  Google Scholar 

  • Pietrafesa, L.J., Janowitz, G.S., Chao, T., Wiesberg, R.H., Askari, F., Noble, E. 1986. The physical oceanography of Pamlico Sound. NC Sea Grant Program, Raleigh, NC, p. 125.

  • Reed, D.J. 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries and Coasts 12: 222–227.

    Article  Google Scholar 

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42(2): 201–237.

    Article  Google Scholar 

  • Riggs, S.R., Ames, D.V. 2003. Drowning of North Carolina: sea-level rise and estuarine dynamics. NC Sea Grant Program, Raleigh, NC, p. 152.

  • Simmons, C.E. 1993. Sediment characteristics of North Carolina streams. USGS Water-Supply Paper 2364.

  • Stevenson, J.C., L.G. Ward, and M.S. Kearney. 1988. Sediment transport and trapping in marsh systems: Implications of tidal flux studies. Marine Geology 80: 37–59.

    Article  Google Scholar 

  • Stumpf, R.P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science 17: 495–508.

    Article  Google Scholar 

  • Temmerman, S., G. Govers, S. Wartel, and P. Meire. 2003. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surface Processes and Landforms 28: 739–755.

    Article  Google Scholar 

  • Thomas, S., and P.V. Ridd. 2004. Review of methods to measure short time scale sediment accumulation. Marine Geology 207: 95–114.

    Article  Google Scholar 

  • van Wijnen, H.J., and J.P. Bakker. 2001. Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise. Estuarine, Coastal and Shelf Science 52: 381–390.

    Article  Google Scholar 

  • Voulgaris, G., and S.T. Meyers. 2004. Net effect of rainfall activity on salt-marsh sediment distribution. Marine Geology 207: 115–129.

    Article  Google Scholar 

  • Ward, L.G., M.S. Kearney, and J.C. Stevenson. 1998. Variations in sedimentary environments and accretionary patterns in estuarine marshes undergoing rapid submergence, Chesapeake Bay. Marine Geology 151: 111–134.

    Article  Google Scholar 

  • Wells, J.T., and S.Y. Kim. 1989. Sedimentation in the Albemarle–Pamlico lagoonal system: synthesis and hypotheses. Marine Geology 88: 263–284.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the NC RENaissance Computing Institute, the USGS, and the Department of Geological Sciences at East Carolina University for providing financial support of this research. Special thanks to the faculty, staff, and graduate students that helped in the laboratory and the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lagomasino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lagomasino, D., Corbett, D.R. & Walsh, J.P. Influence of Wind-Driven Inundation and Coastal Geomorphology on Sedimentation in Two Microtidal Marshes, Pamlico River Estuary, NC. Estuaries and Coasts 36, 1165–1180 (2013). https://doi.org/10.1007/s12237-013-9625-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9625-0

Keywords

  • Marsh
  • Sedimentation
  • Accumulation
  • Inundation
  • Microtidal
  • Berm
  • Geomorphology