Skip to main content
Log in

Changes in the Abundance and Species Composition of Phytoplankton in the Last 150 Years in the Southern Black Sea

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Changes in total abundance and in species composition of phytoplankton in the last 150 years in the southern Black Sea were investigated through a paleoecological study of two sediment cores. The results show changes in the species composition and a marked increase in total abundance of siliceous protists after around 1960. In core 22 (42°13.534′ N/36°29.555′ E), the dominating species before 1960 were Cyclotella choctawhatcheeana and Thalassiosira oestrupii. In core 25 (42°6.212′ N/36°37.460′ E), the dominating species before 1960 were T. oestrupii, Cyclotella meneghiniana, C. choctawhatcheeana, and Pseudosolenia cf. calcar-avis. Core 22 was located in closer proximity to the rim current than core 25, and the differences in total abundance between the cores could be related to differences in local nutrient loading prior to 1960. After around 1960, both cores changed to a community dominated by C. choctawhatcheeana. The changes in total abundance and species composition after around 1960 could be related to the increased nutrient loading from the Danube River into the rim current after the late 1960s. The results also showed changes in both total abundance and in species composition of dinoflagellate cysts. The dominating dinoflagellate cysts recorded were Lingulodinium polyedrum, Polykrikos schwartzii, and Spiniferites spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appleby, P. 2001. Chronostratigraphic techniques in recent sediments. In Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques, ed. W.M. Last and J.P. Smol, 171–203. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bat, L., F. Sahin, F. Ustun, A.E. Kideys, and H.H. Satilmis. 2007. The qualitative and quantitative distribution in phytoplankton and zooplankton of southern Black Sea of Cape Sinop, Turkey in 1999–2000, 1–6. Aberdeen: Conference Publication of OCEANS 2007.

    Google Scholar 

  • Bennett, K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.

    Article  Google Scholar 

  • Black, H.J., M. Dainat, M. Köster, and L.A. Meyer-Reil. 2002. A multiple corer for taking virtually undisturbed samples from shallow water sediments. Estuarine, Coastal and Shelf Science 54: 45–50.

    Article  Google Scholar 

  • Bodeanu, N. 1993. Microalgal blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions. In Toxic phytoplankton blooms in the sea, ed. T. Smayda and Y. Shimizu, 203–209. Dordrecht: Elsevier.

    Google Scholar 

  • Bolch, C.J.S. 1997. The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia 36: 472–478.

    Article  Google Scholar 

  • Bologa, A. 1987. Annotated bibliography on the macrophytobenthos along the Romanian Black Sea coast (1981–1986). Cercetâri Marine 20(21): 5–17.

    Google Scholar 

  • Cociasu, A., L. Dorogan, C. Humborg, and L. Popa. 1996. Long-term ecological changes in Romanian coastal waters of the Black Sea. Marine Pollution Bulletin 32: 32–38.

    Article  CAS  Google Scholar 

  • Dale, B. 1996. Dinoflagellate cyst ecology: Modeling and geological applications. In Palynology: Principles and applications, ed. J. Jansonius and D. McGregor, 1249–1275. Dalllas: American Association of Stratigraphic Palynologists Foundation.

    Google Scholar 

  • Dugdale, R.C., and J.J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography 12: 196–206.

    Article  CAS  Google Scholar 

  • Davis, M., and M. Ford. 1982. Sediment focusing in mirror lake, New Hampshire. Limnology and Oceanography 27: 137–150.

    Article  Google Scholar 

  • Eker-Develi, E., and A.E. Kideys. 2003. Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. Journal of Marine Systems 39: 203–211.

    Article  Google Scholar 

  • Ellegaard, M., A.L. Clarke, N. Reuss, S. Drew, K. Weckström, N.J. Anderson, and D.J. Conley. 2006. Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuarine, Coastal and Shelf Science 68: 567–578.

    Article  Google Scholar 

  • Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin 70: 1063–1085.

    Google Scholar 

  • Gordon, A.D., and H.J.B. Birks. 1972. Numerical methods in Quaternary paleoecology. New Phytologist 71: 961–979.

    Article  Google Scholar 

  • Hasle, G., and E. Syvertsen. 1996. Marine diatoms. In Identifying marine phytoplankton, ed. R.T. Carmelo, 5–386. USA: Academic Press.

    Google Scholar 

  • Hilligsøe, K.M., K. Richardson, J. Bendtsen, L. Sørensen, T.G. Nielsen, and M.M. Lyngsgaard. 2011. Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep Sea Research Part I: Oceanographic Research Papers 58: 826–838.

    Article  Google Scholar 

  • Humborg, C., V. Ittekkot, A. Cociasu, and B. Bodungen. 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388.

    Article  CAS  Google Scholar 

  • Jaanus, A., K. Toming, S. Hälfors, K. Kaljurand, and I. Lips. 2009. Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. Hydrobiologia 629: 157–168.

    Article  CAS  Google Scholar 

  • Juggins, S. 2009. rioja: Analysis of Quaternary science data. R package version 0.5-6. http://cran.r-project.org/package=rioja/. Accessed 25 November 2011.

  • Kideys, A.E., A.V. Kovalev, G. Shulman, A. Gordina, and F. Bingel. 2000. A review of zooplankton investigations of the Black Sea over the last decade. Journal of Marine Systems 25: 355–371.

    Article  Google Scholar 

  • Kiørboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29: 1–72.

    Article  Google Scholar 

  • Konovalov, S., L. Ivanov, J. Murray, and L. Eremeeva. 1999. Eutrophication: A plausible cause for changes in hydrochemical structure of the Black Sea anoxic layer. In Environmental degradation of the Black Sea: Challenges and remedies. NATO Science Series, ed. S. Besiktepe, U. Unlüata, and A. Bologa, 61–74. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Konovalov, S.K., and J.W. Murray. 2001. Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). Journal of Marine Systems 31: 217–243.

    Article  Google Scholar 

  • Konovalov, S.K., J. Murray, and G. Luther III. 2005. Basic processes of Black Sea biogeochemistry. Oceanography 18: 24–35.

    Article  Google Scholar 

  • Korhola, A., and T. Grönlund. 1999. Observations of Ebria tripartita (Schumann) Lemmermann in Baltic sediments. Journal of Paleolimnology 21: 1–8.

    Article  Google Scholar 

  • Konsulov, A., T. Konsulova, K. Prodanov, S. Moncheva, K. Dencheva, A. Velikov, and L. Kamburska. 1998. Conservation of the biological diversity as a prerequisite for sustainable development in the Black Sea Region. In State of the art and tendencies for changes in the Black Sea biodiversity in front of the Bulgarian Coast. NATO ASI Series 46, ed. V. Kotlyakov, M. Uppenbrink, and V. Metreveli, 101–128. Dordrecht: Springer.

    Google Scholar 

  • Krammer, K., and H. Lange-Bertalot. 1986. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 1. Teil: Naviculaceae, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer Verlag. in German.

    Google Scholar 

  • Krammer, K., and H. Lange-Bertalot. 1988. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer Verlag. in German.

    Google Scholar 

  • Krammer, K., and H. Lange-Bertalot. 1991. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer. Stuttgart, Germany: Gustav Fischer Verlag. in German.

    Google Scholar 

  • Krammer, K., and H. Lange-Bertalot. 2004. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae), Gomphonema Gesamtliteraturverzeichnis Teil, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer, 1–4. Germany, Heidelberg: Spektrum Akademischer Verlag. in German.

    Google Scholar 

  • Kuypers, M.M.M., A.O. Sliekers, G. Lavik, M. Schmid, B.B. Jørgensen, J.G. Kuenen, J.S.S. Damsté, M. Strous, and S.M. Jetten. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422: 608–611.

    Article  CAS  Google Scholar 

  • Matsuoka, K. 1999. Eutrophication process recorded in dinoflagellate cyst assemblages—a case of Yokohama Port, Tokyo Bay, Japan. Science of the Total Environment 231: 17–35.

    Article  CAS  Google Scholar 

  • Matsuoka, K., and Y. Fukuyo. 2000. Technical guide for modern dinoflagellate cyst study. Tokyo: WESTPAC-HAB/WESTPAC/IOC.

    Google Scholar 

  • Mee, L. 1992. The Black-Sea in crisis—a need for concerted international action. Ambio 21: 278–286.

    Google Scholar 

  • Morzadec-Kerfourn, M. 1976. La signification écologique des dinoflagellés et leur intérêt pour l’étude des variations du niveau marin. Revue de Micropaleontologie 18: 229–235 (in French).

    Google Scholar 

  • Murray, J.W., L.A. Codispoti and G.E. Friederich. 1995. Oxidation–reduction environments: The suboxic zone in the Black Sea. In Aquatic Chemistry: Interfacial and Interspecific Processes, ed. C.P. Huang, C.R. O'Melia and J.J. Morgan. Advances in Chemistry Series 224: 157–176. American Chemical Society.

  • Murray, J.W., C. Fuchsman, J. Kirkpatrick, B. Paul, and S.K. Konovalov. 2005. Species and δ15N signatures of nitrogen transformations in the suboxic zone in the Black Sea. Oceanography 18: 36–47.

    Article  Google Scholar 

  • Murray, J., K. Stewart, S. Kassakian, M. Krynytzky, and D. DiJulio. 2007. Oxic, suboxic, and anoxic conditions in the Black Sea. In The Black Sea flood question: Changes in coastline, climate, sand human settlement, ed. V. Yanko-Hombach, A.S. Gilbert, N. Panin, and P.M. Dolukhanov, 1–21. Dordrecht: Springer.

    Google Scholar 

  • Neuman, G. 1942. Die absolute Topographie des physikalischen Meeresniveaus und die Oberflächen strömungen des Schwarzen Meeres. Annalen der Hydrographie und Maritimen Meteorologie 70: 265–285.

    Google Scholar 

  • Oguz, T., V.S. Latun, M.A. Latif, V.V. Vladimirov, H.I. Sur, A.A. Markov, E. Özsoy, B.B. Kotovshchikov, V.V. Eremeev, and Ü. Ünlüata. 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research 40: 1597–1612.

    Article  Google Scholar 

  • Oguz, T. 2005. Long-term impacts of anthropogenic forcing on the Black Sea ecosystem. Oceanography 18: 112–121.

    Article  Google Scholar 

  • Osawa, M., K. Takahashi, and B.J. Hay. 2005. Shell-bearing plankton fluxes in the central Black Sea, 1989–1991. Deep Sea Research Part I: Oceanographic Research Papers 52: 1677–1698.

    Article  Google Scholar 

  • Polat, S.C., and S. Tugrul. 1995. Nutrient and organic carbon exchanges between the Black and Marmara Seas through the Bosporus Strait. Continental Shelf Research 15: 1115–1132.

    Article  Google Scholar 

  • R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.r-project.org/. Accessed 25 November 2011.

  • Raven, J.A. 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Canadian Bulletin of Fisheries and Aquatic Sciences 214: 1–70.

    Google Scholar 

  • Renberg, I. 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology 4: 87–90.

    Article  Google Scholar 

  • Ross, D.A., E.T. Degens, and J. MacIlvaine. 1970. Black Sea: Recent sedimentary history. Science 170: 163–165.

    Article  CAS  Google Scholar 

  • Smayda, T.J., and C.S. Reynolds. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research 49: 95–106.

    Article  Google Scholar 

  • Sur, H.I., E. Özsoy, Y.P. Ilyin, and Ü. Ünlüata. 1996. Coastal/deep ocean interactions in the Black Sea and their ecological/environmental impacts. Journal of Marine Systems 7: 293–320.

    Article  Google Scholar 

  • Throndsen, J., G. Hasle, and K. Tangen. 2003. Norsk Kystplanktonflora. Oslo: Almater Forlag AS (Norwegian).

    Google Scholar 

  • Tilman, D., S.S. Kilham, and P. Kilham. 1982. Phytoplankton community ecology: The role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.

    Article  Google Scholar 

  • Tolmazin, D. 1985. Changing coastal oceanography of the Black Sea II: Mediterranean effluent. Progress in Oceanography 15: 277–316.

    Article  Google Scholar 

  • Tugrul, S., O. Basturk, C. Saydam, and A. Yilmaz. 1992. Changes in hydrochemistry of the Black Sea inferred from water density profiles. Nature 359: 137–139.

    Article  CAS  Google Scholar 

  • Tummers, B. 2006. DataThief III. http://datathief.org/. Accessed 4 November 2012.

  • Vinogradov, M.E., V.V. Sapozhnikov, and E.A. Shuskina. 1992. The Black Sea ecosystem. Moscow: Nauka (in Russian).

    Google Scholar 

  • Weckström, K., and S. Juggins. 2005. Coastal diatom-environmental relationships from the Gulf of Finland, Baltic Sea. Journal of Phycology 42: 21–35.

    Article  Google Scholar 

  • Yunev, O.A., V.I. Vedernikov, O. Basturk, A. Yilmaz, A.E. Kideys, S. Moncheva, and S.K. Konovalov. 2002. Long-term variations of surface chlorophyll a and primary production in the open Black Sea. Marine Ecology Progress Series 230: 11–28.

    Article  Google Scholar 

  • Yunev, O.A., S. Moncheva, and J. Carstensen. 2005. Long-term variability of vertical chlorophyll a and nitrate profiles in the open Black Sea: Eutrophication and climate change. Marine Ecology Progress Series 294: 95–107.

    Article  CAS  Google Scholar 

  • Yvon-Durocher, G., J.M. Montoya, M. Trimmer, and G. Woodward. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology 17: 1681–1694.

    Article  Google Scholar 

  • Zaitsev, Y. 1994. Impact of eutrophication on the Black Sea fauna. General Fisheries Counsel for the Mediterranean. Studies and reviews. Rome: FAO.

    Google Scholar 

  • Zaitsev, Y., and B. Alexandrov. 1997. Recent man-made changes in the Black Sea ecosystem. In Sensitivity to change: Black Sea, Baltic Sea and North Sea, ed. E. Özsoy and A. Mikaelyan, 25–31. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Zaitsev, Y., and V. Mamaev. 1997. Marine biological diversity in the Black Sea: a study of change and decline. GEF Black Sea Environmental Programme. New York: United Nations Publications.

    Google Scholar 

Download references

Acknowledgments

We want to thank Helge Arz, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), for providing the sediment cores. In addition, Kaarina Weckström, Geological Survey of Denmark and Greenland, introduced the method used for cleaning the siliceous protists samples and Katherine Richardson, University of Copenhagen, commented on and proof-read the manuscript. Anonymous reviewers provided helpful comments and suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Askov Mousing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousing, E.A., Andersen, T.J. & Ellegaard, M. Changes in the Abundance and Species Composition of Phytoplankton in the Last 150 Years in the Southern Black Sea. Estuaries and Coasts 36, 1206–1218 (2013). https://doi.org/10.1007/s12237-013-9623-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9623-2

Keywords

Navigation