Estuaries and Coasts

, Volume 36, Issue 6, pp 1206–1218 | Cite as

Changes in the Abundance and Species Composition of Phytoplankton in the Last 150 Years in the Southern Black Sea

  • Erik Askov Mousing
  • Thorbjørn Joest Andersen
  • Marianne Ellegaard


Changes in total abundance and in species composition of phytoplankton in the last 150 years in the southern Black Sea were investigated through a paleoecological study of two sediment cores. The results show changes in the species composition and a marked increase in total abundance of siliceous protists after around 1960. In core 22 (42°13.534′ N/36°29.555′ E), the dominating species before 1960 were Cyclotella choctawhatcheeana and Thalassiosira oestrupii. In core 25 (42°6.212′ N/36°37.460′ E), the dominating species before 1960 were T. oestrupii, Cyclotella meneghiniana, C. choctawhatcheeana, and Pseudosolenia cf. calcar-avis. Core 22 was located in closer proximity to the rim current than core 25, and the differences in total abundance between the cores could be related to differences in local nutrient loading prior to 1960. After around 1960, both cores changed to a community dominated by C. choctawhatcheeana. The changes in total abundance and species composition after around 1960 could be related to the increased nutrient loading from the Danube River into the rim current after the late 1960s. The results also showed changes in both total abundance and in species composition of dinoflagellate cysts. The dominating dinoflagellate cysts recorded were Lingulodinium polyedrum, Polykrikos schwartzii, and Spiniferites spp.


Black Sea Paleoecology Eutrophication Diatoms Dinoflagellate cysts 



We want to thank Helge Arz, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), for providing the sediment cores. In addition, Kaarina Weckström, Geological Survey of Denmark and Greenland, introduced the method used for cleaning the siliceous protists samples and Katherine Richardson, University of Copenhagen, commented on and proof-read the manuscript. Anonymous reviewers provided helpful comments and suggestions that improved the manuscript.


  1. Appleby, P. 2001. Chronostratigraphic techniques in recent sediments. In Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques, ed. W.M. Last and J.P. Smol, 171–203. Dordrecht: Kluwer Academic Publishers.Google Scholar
  2. Bat, L., F. Sahin, F. Ustun, A.E. Kideys, and H.H. Satilmis. 2007. The qualitative and quantitative distribution in phytoplankton and zooplankton of southern Black Sea of Cape Sinop, Turkey in 1999–2000, 1–6. Aberdeen: Conference Publication of OCEANS 2007.Google Scholar
  3. Bennett, K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.CrossRefGoogle Scholar
  4. Black, H.J., M. Dainat, M. Köster, and L.A. Meyer-Reil. 2002. A multiple corer for taking virtually undisturbed samples from shallow water sediments. Estuarine, Coastal and Shelf Science 54: 45–50.CrossRefGoogle Scholar
  5. Bodeanu, N. 1993. Microalgal blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions. In Toxic phytoplankton blooms in the sea, ed. T. Smayda and Y. Shimizu, 203–209. Dordrecht: Elsevier.Google Scholar
  6. Bolch, C.J.S. 1997. The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia 36: 472–478.CrossRefGoogle Scholar
  7. Bologa, A. 1987. Annotated bibliography on the macrophytobenthos along the Romanian Black Sea coast (1981–1986). Cercetâri Marine 20(21): 5–17.Google Scholar
  8. Cociasu, A., L. Dorogan, C. Humborg, and L. Popa. 1996. Long-term ecological changes in Romanian coastal waters of the Black Sea. Marine Pollution Bulletin 32: 32–38.CrossRefGoogle Scholar
  9. Dale, B. 1996. Dinoflagellate cyst ecology: Modeling and geological applications. In Palynology: Principles and applications, ed. J. Jansonius and D. McGregor, 1249–1275. Dalllas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
  10. Dugdale, R.C., and J.J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography 12: 196–206.CrossRefGoogle Scholar
  11. Davis, M., and M. Ford. 1982. Sediment focusing in mirror lake, New Hampshire. Limnology and Oceanography 27: 137–150.CrossRefGoogle Scholar
  12. Eker-Develi, E., and A.E. Kideys. 2003. Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. Journal of Marine Systems 39: 203–211.CrossRefGoogle Scholar
  13. Ellegaard, M., A.L. Clarke, N. Reuss, S. Drew, K. Weckström, N.J. Anderson, and D.J. Conley. 2006. Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuarine, Coastal and Shelf Science 68: 567–578.CrossRefGoogle Scholar
  14. Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin 70: 1063–1085.Google Scholar
  15. Gordon, A.D., and H.J.B. Birks. 1972. Numerical methods in Quaternary paleoecology. New Phytologist 71: 961–979.CrossRefGoogle Scholar
  16. Hasle, G., and E. Syvertsen. 1996. Marine diatoms. In Identifying marine phytoplankton, ed. R.T. Carmelo, 5–386. USA: Academic Press.Google Scholar
  17. Hilligsøe, K.M., K. Richardson, J. Bendtsen, L. Sørensen, T.G. Nielsen, and M.M. Lyngsgaard. 2011. Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep Sea Research Part I: Oceanographic Research Papers 58: 826–838.CrossRefGoogle Scholar
  18. Humborg, C., V. Ittekkot, A. Cociasu, and B. Bodungen. 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388.CrossRefGoogle Scholar
  19. Jaanus, A., K. Toming, S. Hälfors, K. Kaljurand, and I. Lips. 2009. Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. Hydrobiologia 629: 157–168.CrossRefGoogle Scholar
  20. Juggins, S. 2009. rioja: Analysis of Quaternary science data. R package version 0.5-6. Accessed 25 November 2011.
  21. Kideys, A.E., A.V. Kovalev, G. Shulman, A. Gordina, and F. Bingel. 2000. A review of zooplankton investigations of the Black Sea over the last decade. Journal of Marine Systems 25: 355–371.CrossRefGoogle Scholar
  22. Kiørboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29: 1–72.CrossRefGoogle Scholar
  23. Konovalov, S., L. Ivanov, J. Murray, and L. Eremeeva. 1999. Eutrophication: A plausible cause for changes in hydrochemical structure of the Black Sea anoxic layer. In Environmental degradation of the Black Sea: Challenges and remedies. NATO Science Series, ed. S. Besiktepe, U. Unlüata, and A. Bologa, 61–74. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  24. Konovalov, S.K., and J.W. Murray. 2001. Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). Journal of Marine Systems 31: 217–243.CrossRefGoogle Scholar
  25. Konovalov, S.K., J. Murray, and G. Luther III. 2005. Basic processes of Black Sea biogeochemistry. Oceanography 18: 24–35.CrossRefGoogle Scholar
  26. Korhola, A., and T. Grönlund. 1999. Observations of Ebria tripartita (Schumann) Lemmermann in Baltic sediments. Journal of Paleolimnology 21: 1–8.CrossRefGoogle Scholar
  27. Konsulov, A., T. Konsulova, K. Prodanov, S. Moncheva, K. Dencheva, A. Velikov, and L. Kamburska. 1998. Conservation of the biological diversity as a prerequisite for sustainable development in the Black Sea Region. In State of the art and tendencies for changes in the Black Sea biodiversity in front of the Bulgarian Coast. NATO ASI Series 46, ed. V. Kotlyakov, M. Uppenbrink, and V. Metreveli, 101–128. Dordrecht: Springer.Google Scholar
  28. Krammer, K., and H. Lange-Bertalot. 1986. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 1. Teil: Naviculaceae, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer Verlag. in German.Google Scholar
  29. Krammer, K., and H. Lange-Bertalot. 1988. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer Verlag. in German.Google Scholar
  30. Krammer, K., and H. Lange-Bertalot. 1991. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer. Stuttgart, Germany: Gustav Fischer Verlag. in German.Google Scholar
  31. Krammer, K., and H. Lange-Bertalot. 2004. Süßwasserflora von Mitteleuropa. In Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae), Gomphonema Gesamtliteraturverzeichnis Teil, ed. H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer, 1–4. Germany, Heidelberg: Spektrum Akademischer Verlag. in German.Google Scholar
  32. Kuypers, M.M.M., A.O. Sliekers, G. Lavik, M. Schmid, B.B. Jørgensen, J.G. Kuenen, J.S.S. Damsté, M. Strous, and S.M. Jetten. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422: 608–611.CrossRefGoogle Scholar
  33. Matsuoka, K. 1999. Eutrophication process recorded in dinoflagellate cyst assemblages—a case of Yokohama Port, Tokyo Bay, Japan. Science of the Total Environment 231: 17–35.CrossRefGoogle Scholar
  34. Matsuoka, K., and Y. Fukuyo. 2000. Technical guide for modern dinoflagellate cyst study. Tokyo: WESTPAC-HAB/WESTPAC/IOC.Google Scholar
  35. Mee, L. 1992. The Black-Sea in crisis—a need for concerted international action. Ambio 21: 278–286.Google Scholar
  36. Morzadec-Kerfourn, M. 1976. La signification écologique des dinoflagellés et leur intérêt pour l’étude des variations du niveau marin. Revue de Micropaleontologie 18: 229–235 (in French).Google Scholar
  37. Murray, J.W., L.A. Codispoti and G.E. Friederich. 1995. Oxidation–reduction environments: The suboxic zone in the Black Sea. In Aquatic Chemistry: Interfacial and Interspecific Processes, ed. C.P. Huang, C.R. O'Melia and J.J. Morgan. Advances in Chemistry Series 224: 157–176. American Chemical Society.Google Scholar
  38. Murray, J.W., C. Fuchsman, J. Kirkpatrick, B. Paul, and S.K. Konovalov. 2005. Species and δ15N signatures of nitrogen transformations in the suboxic zone in the Black Sea. Oceanography 18: 36–47.CrossRefGoogle Scholar
  39. Murray, J., K. Stewart, S. Kassakian, M. Krynytzky, and D. DiJulio. 2007. Oxic, suboxic, and anoxic conditions in the Black Sea. In The Black Sea flood question: Changes in coastline, climate, sand human settlement, ed. V. Yanko-Hombach, A.S. Gilbert, N. Panin, and P.M. Dolukhanov, 1–21. Dordrecht: Springer.Google Scholar
  40. Neuman, G. 1942. Die absolute Topographie des physikalischen Meeresniveaus und die Oberflächen strömungen des Schwarzen Meeres. Annalen der Hydrographie und Maritimen Meteorologie 70: 265–285.Google Scholar
  41. Oguz, T., V.S. Latun, M.A. Latif, V.V. Vladimirov, H.I. Sur, A.A. Markov, E. Özsoy, B.B. Kotovshchikov, V.V. Eremeev, and Ü. Ünlüata. 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research 40: 1597–1612.CrossRefGoogle Scholar
  42. Oguz, T. 2005. Long-term impacts of anthropogenic forcing on the Black Sea ecosystem. Oceanography 18: 112–121.CrossRefGoogle Scholar
  43. Osawa, M., K. Takahashi, and B.J. Hay. 2005. Shell-bearing plankton fluxes in the central Black Sea, 1989–1991. Deep Sea Research Part I: Oceanographic Research Papers 52: 1677–1698.CrossRefGoogle Scholar
  44. Polat, S.C., and S. Tugrul. 1995. Nutrient and organic carbon exchanges between the Black and Marmara Seas through the Bosporus Strait. Continental Shelf Research 15: 1115–1132.CrossRefGoogle Scholar
  45. R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Accessed 25 November 2011.
  46. Raven, J.A. 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Canadian Bulletin of Fisheries and Aquatic Sciences 214: 1–70.Google Scholar
  47. Renberg, I. 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology 4: 87–90.CrossRefGoogle Scholar
  48. Ross, D.A., E.T. Degens, and J. MacIlvaine. 1970. Black Sea: Recent sedimentary history. Science 170: 163–165.CrossRefGoogle Scholar
  49. Smayda, T.J., and C.S. Reynolds. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research 49: 95–106.CrossRefGoogle Scholar
  50. Sur, H.I., E. Özsoy, Y.P. Ilyin, and Ü. Ünlüata. 1996. Coastal/deep ocean interactions in the Black Sea and their ecological/environmental impacts. Journal of Marine Systems 7: 293–320.CrossRefGoogle Scholar
  51. Throndsen, J., G. Hasle, and K. Tangen. 2003. Norsk Kystplanktonflora. Oslo: Almater Forlag AS (Norwegian).Google Scholar
  52. Tilman, D., S.S. Kilham, and P. Kilham. 1982. Phytoplankton community ecology: The role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.CrossRefGoogle Scholar
  53. Tolmazin, D. 1985. Changing coastal oceanography of the Black Sea II: Mediterranean effluent. Progress in Oceanography 15: 277–316.CrossRefGoogle Scholar
  54. Tugrul, S., O. Basturk, C. Saydam, and A. Yilmaz. 1992. Changes in hydrochemistry of the Black Sea inferred from water density profiles. Nature 359: 137–139.CrossRefGoogle Scholar
  55. Tummers, B. 2006. DataThief III. Accessed 4 November 2012.
  56. Vinogradov, M.E., V.V. Sapozhnikov, and E.A. Shuskina. 1992. The Black Sea ecosystem. Moscow: Nauka (in Russian).Google Scholar
  57. Weckström, K., and S. Juggins. 2005. Coastal diatom-environmental relationships from the Gulf of Finland, Baltic Sea. Journal of Phycology 42: 21–35.CrossRefGoogle Scholar
  58. Yunev, O.A., V.I. Vedernikov, O. Basturk, A. Yilmaz, A.E. Kideys, S. Moncheva, and S.K. Konovalov. 2002. Long-term variations of surface chlorophyll a and primary production in the open Black Sea. Marine Ecology Progress Series 230: 11–28.CrossRefGoogle Scholar
  59. Yunev, O.A., S. Moncheva, and J. Carstensen. 2005. Long-term variability of vertical chlorophyll a and nitrate profiles in the open Black Sea: Eutrophication and climate change. Marine Ecology Progress Series 294: 95–107.CrossRefGoogle Scholar
  60. Yvon-Durocher, G., J.M. Montoya, M. Trimmer, and G. Woodward. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology 17: 1681–1694.CrossRefGoogle Scholar
  61. Zaitsev, Y. 1994. Impact of eutrophication on the Black Sea fauna. General Fisheries Counsel for the Mediterranean. Studies and reviews. Rome: FAO.Google Scholar
  62. Zaitsev, Y., and B. Alexandrov. 1997. Recent man-made changes in the Black Sea ecosystem. In Sensitivity to change: Black Sea, Baltic Sea and North Sea, ed. E. Özsoy and A. Mikaelyan, 25–31. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  63. Zaitsev, Y., and V. Mamaev. 1997. Marine biological diversity in the Black Sea: a study of change and decline. GEF Black Sea Environmental Programme. New York: United Nations Publications.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2013

Authors and Affiliations

  • Erik Askov Mousing
    • 1
  • Thorbjørn Joest Andersen
    • 3
  • Marianne Ellegaard
    • 2
  1. 1.Center for Macroecology, Evolution and Climate, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Marine Biological Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Geography and GeologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations