Skip to main content
Log in

A Comprehensive Study of Silica Pools and Fluxes in Wadden Sea Salt Marshes

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

As an essential nutrient for diatoms, silica plays a key role in the estuarine and coastal food web. High concentrations of dissolved silica (DSi) were found in the seepage water of tidal freshwater marshes, which were therefore assumed to contribute to the silica supply to estuarine waters in times of silica limitation. A comprehensive budget calculation for European salt marshes is presented in this study. Earlier, salt marshes were considered to have even higher silica recycling rates than tidal freshwater marshes. Between 2009 and 2011, concentrations, pools and fluxes of silica in two salt marshes at the German Wadden Sea coast were determined (in soil, pore water, aboveground vegetation, freshly deposited sediments and seepage water). Subsequently, a budget was calculated. Special emphasis was placed on the influence of grazing management on silica cycling. Our results show that the two salt marshes were sinks for silica. The average import of biogenic silica (BSi) with freshly deposited sediments (1,334 kmol km−2 year−1) largely exceeded the DSi and BSi exports with seepage water (80 kmol km−2 year−1). Grazing management can affect silica cycling of salt marshes by influencing hydrology and vegetation structure. Abandoned sites had larger DSi export rates than grazed sites. One third of all BSi imports occurred in only one major flooding, underlining the relevance of rare events in the silica budget of tidal marshes. This aspect has been widely neglected in earlier studies, what might have led to an underestimation of silica import rates to tidal marshes hitherto.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Admiraal, W. 1977. Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Marine Biology 43: 307–315.

    Article  CAS  Google Scholar 

  • Alexandre, A., J.D. Meunier, F. Colin, and J.M. Koud. 1997. Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochimica Acta 61: 677–682.

    Article  CAS  Google Scholar 

  • Anderson, D., P. Gilbert, and J. Burkholder. 2002. Harmful algal blooms and eutrophication. Nutrient sources, composition, and consequences. Estuaries and Coasts 25: 704–726.

    Article  Google Scholar 

  • Becker, G. 1998. Der Salzgehalt im Wattenmeer. In Nordfriesisches und Dithmarscher Wattenmeer, ed. Umweltbundesamt, 60–61. Stuttgart: Ulmer

  • Bidle, K.D., and F. Azam. 1999. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397: 508–512.

    Article  CAS  Google Scholar 

  • Blecker, S.W., R.L. McCulley, O.A. Chadwick, and E.F. Kelly. 2006. Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles 20: 1–11.

    Article  Google Scholar 

  • Bockelmann, A., and R. Neuhaus. 1999. Competitive exclusion of Elymus athericus from a high stress habitat in a European salt marsh. Journal of Ecology 87: 503–513.

    Article  Google Scholar 

  • Boorman, L.A. 1999. Salt marshes—present functioning and future change. Mangroves and Salt Marshes 3: 227–241.

    Article  Google Scholar 

  • Borrelli, N., M. Fernanda Alvarez, M.L. Osterrieth, and J.E. Marcovecchio. 2010. Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina—a preliminary study. Journal of Soils and Sediments 10: 983–994.

    Article  CAS  Google Scholar 

  • BSH (Federal Maritime and Hydrographic Agency) 2011. Gezeitentafeln 2012. Europäische Gewässer. Bundesamt für Seeschifffahrt und Hydrographie

  • Carey, J.C., and R.W. Fulweiler. 2013. Nitrogen enrichment increases net silica accumulation in a temperate salt marsh. Limnology and Oceanography 58: 99–111.

    Article  CAS  Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science 50: 315–331.

    Article  Google Scholar 

  • Clymans, W., E. Struyf, G. Govers, F. Vandevenne, and D.J. Conley. 2011. Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8: 2281–2293.

    Article  CAS  Google Scholar 

  • Cornelis, J., B. Delvaux, R.B. Georg, Y. Lucas, J. Ranger, and S. Opfergelt. 2011. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8: 89–112.

    Article  CAS  Google Scholar 

  • Dankers, N., M. Binsbergen, K. Zegers, R. Laane, and M.R. van der Loeff. 1984. Transportation of water, particulate and dissolved organic and inorganic matter between a salt marsh and the Ems-Dollard estuary, The Netherlands. Estuarine, Coastal and Shelf Science 19: 143–165.

    Article  CAS  Google Scholar 

  • de Bakker, N.V.J., M.A. Hemminga, and J. van Soelen. 1999. The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica. Plant and Soil 215: 19–27.

    Article  Google Scholar 

  • de Leeuw, J., H. Olff, and J.P. Bakker. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquatic Botany 36: 139–151.

    Article  Google Scholar 

  • DeMaster, D.J. 1981. The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45: 1715–1732.

    Article  CAS  Google Scholar 

  • Dürr, H.H., M. Meybeck, J. Hartmann, G.G. Laruelle, and V. Roubeix. 2011. Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 8: 597–620.

    Article  Google Scholar 

  • DWD (German Weather Service). 2011. Klimadaten Deutschland—long term average data (1961–1990) on temperature and precipitation. www.dwd.de. Accessed 15 Feb 2011.

  • Epstein, E. 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America 91: 11–17.

    Article  CAS  Google Scholar 

  • Esselink, P., W. Zijlstra, K.S. Dijkema, and R. van Diggelen. 2000. The effects of decreased management on plant-species distribution patterns in a salt marsh nature reserve in the Wadden Sea. Biological Conservation 93: 61–76.

    Article  Google Scholar 

  • Esselink, P., J. Petersen, S. Arens, J.P. Bakker, J. Bunje, K.S. Dijkema, N. Hecker, U. Hellwig, A.-V. Jensen, B. Kers, P. Körber, E.J. Lammerts, G. Lüerßen, H. Marencic, M. Stock, R. Veeneklaas, M. Vreeken, and M. Wolters. 2009. Thematic report no. 8: salt marshes. In Wadden Sea quality status report 2009, ed. H. Marencic and J. de Vlas, 1–54. Wilhelmshaven: Common Wadden Sea Secretariat.

    Google Scholar 

  • Facelli, J., and S. Pickett. 1991. Plant litter: its dynamics and effects on plant community structure. The Botanical Review 57: 1–32.

    Article  Google Scholar 

  • Farmer, V.C., E. Delbos, and J.D. Miller. 2005. The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127: 71–79.

    Article  CAS  Google Scholar 

  • Freund, H., and H. Streif. 2000. Natürliche Pegelmarken für Meeresspiegelschwankungen der letzten 2000 Jahre im Bereich der Insel Juist. Petermanns Geographische Mitteilungen 144: 34–45.

    Google Scholar 

  • Gardner, L.R. 1975. Runoff from an intertidal marsh during tidal exposure-recession curves and chemical characteristics. Limnology and Oceanography 20: 81–89.

    Article  CAS  Google Scholar 

  • Gérard, F., M. François, and J. Ranger. 2002. Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhône, France). Geoderma 107: 197–226.

    Article  Google Scholar 

  • Groenendijk, A.M. 1984. Primary production of four dominant salt-marsh angiosperms in the SW Netherlands. Plant Ecology 57: 143–152.

    Article  Google Scholar 

  • Hackney, C.T., L.B. Cahoon, C. Preziosi, and A. Norris. 2000. Silicon is the link between tidal marshes and estuarine fisheries. A new paradigm. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 543–554. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Haines, E. 1976. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh. Estuarine and Coastal Marine Science 4: 609–616.

    Article  CAS  Google Scholar 

  • Hansen, H.P., and F. Koroleff. 1999. Determination of nutrients. In Methods of seawater analysis, ed. K. Grasshoff and L.G. Anderson, 159–228. Weinheim: Wiley-VCH.

  • Hartmann, J., N. Jansen, H. Dürr, A. Harashima, K. Okubo, and S. Kempe. 2010. Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of their first-order controls. International Journal of Earth Sciences 99: 207–230.

    Article  CAS  Google Scholar 

  • Hazelden, J., and L.A. Boorman. 1999. The role of soil and vegetation processes in the control of organic and mineral fluxes in some western European salt marshes. Journal of Coastal Research 15: 15–31.

    Google Scholar 

  • Hou, L., M. Liu, S. Xu, H. Yan, D. Ou, S. Cheng, and X. Lin. 2008. Distribution and accumulation of biogenic silica in the intertidal sediments of the Yangtze Estuary. Journal of Environmental Sciences 20: 543–550.

    Article  CAS  Google Scholar 

  • Hou, L., M. Liu, Y. Yang, D. Ou, X. Lin, and H. Chen. 2010. Biogenic silica in intertidal marsh plants and associated sediments of the Yangtze Estuary. Journal of Environmental Sciences 22: 374–380.

    Article  CAS  Google Scholar 

  • Kang, C.-K., B.K. Jeong, L. Kun-Seop, B.K. Jong, L. Pil-Yong, and H. Jae-Sang. 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Marine Ecology Progress Series 259: 79–92.

    Article  CAS  Google Scholar 

  • Kiehl, K., P. Esselink, S. Gettner, and J.P. Bakker. 2001. The impact of sheep grazing on net nitrogen mineralization rate in two temperate salt marshes. Plant Biology 3: 553–560.

    Article  CAS  Google Scholar 

  • Lanning, F.C., and L.N. Eleuterius. 1983. Silica and ash in tissues of some coastal plants. Annals of Botany 51: 835–850.

    CAS  Google Scholar 

  • Loucaides, S., P. van Cappellen, and T. Behrends. 2008. Dissolution of biogenic silica from land to ocean: role of salinity and pH. Limnology and Oceanography 53: 1614–1621.

    Article  CAS  Google Scholar 

  • Lucas, Y., F.J. Luizao, A. Chauvel, J. Rouiller, and D. Nahon. 1993. The relation between biological activity of the rain forest and mineral composition of soils. Science 260: 521–523.

    Article  CAS  Google Scholar 

  • McKee, K.L., and J.A. Cherry. 2009. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta. Wetlands 29: 2–15.

    Article  Google Scholar 

  • Melzer, S., A. Knapp, K. Kirkman, M. Smith, J. Blair, and E. Kelly. 2010. Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochemistry 97: 263–278.

    Article  CAS  Google Scholar 

  • Miretzky, P., V. Conzonno, and A. Fernández Cirelli. 2001. Geochemical processes controlling silica concentrations in groundwaters of the Salado River drainage basin, Argentina. Journal of Geochemical Exploration 73: 155–166.

    Article  CAS  Google Scholar 

  • Mitsch, W.J., J.G. Gosselink, C.J. Anderson, and L. Zhang (eds.). 2009. Wetland ecosystems. Wiley: Hoboken.

    Google Scholar 

  • Müller, F. 2013. Management effects on ecosystem functions of salt marshes: silica cycling and sedimentation processes. Dissertation, University of Hamburg, Hamburg. Department of Biology

  • Norris, A.R., and C.T. Hackney. 1999. Silica content of a mesohaline tidal marsh in North Carolina. Estuarine, Coastal and Shelf Science 49: 597–605.

    Article  CAS  Google Scholar 

  • Olsen, Y.S., A. Dausse, A. Garbutt, H. Ford, D.N. Thomas, and D.L. Jones. 2011. Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh. Soil Biology and Biochemistry 43: 531–541.

    Article  CAS  Google Scholar 

  • Querné, J., O. Ragueneau, and N. Poupart. 2012. In situ biogenic silica variations in the invasive salt marsh plant, Spartina alterniflora: a possible link with environmental stress. Plant and Soil 352: 1–15.

    Article  Google Scholar 

  • Reise, K., M. Baptist, P. Burbridge, N. Dankers, L. Fischer, B. Flemming, A.P. Oost, and C. Smit. 2010. The Wadden Sea—a universally outstanding tidal wetland. Wadden Sea Ecosystem 29: 7–24.

    Google Scholar 

  • Scudlark, J.R., and T.M. Church. 1989. The sedimentary flux of nutrients at a Delaware salt marsh site: a geochemical perspective. Biogeochemistry 7: 55–75.

    Article  Google Scholar 

  • Shotbolt, L. 2010. Pore water sampling from lake and estuary sediments using Rhizon samplers. Journal of Paleolimnology 44: 695–700.

    Article  Google Scholar 

  • Sommer, M., D. Kaczorek, Y. Kuzyakov, and J. Breuer. 2006. Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science 169: 310–329.

    Article  CAS  Google Scholar 

  • Stock, M., Gettner, S. and H. Hagge. 2005. Salzwiesen an der Westküste von Schleswig-Holstein 1988–2001. Heide. Boyens Medien GmbH & Co. KG (Schriftenreihe/Nationalpark Schleswig-Holsteinisches Wattenmeer, 15)

  • Stock, M. 2011. Patterns in surface elevation change across a temperate salt marsh platform in relation to sea-level rise. Coastline Reports: 33–48

  • Struyf, E., A. Dausse, S. van Damme, K. Bal, B. Gribsholt, H.T. Boschker, J.J. Middelburg, and P. Meire. 2006. Tidal marshes and biogenic silica recycling at the land-sea interface. Limnology and Oceanography 51: 838–846.

    Article  CAS  Google Scholar 

  • Struyf, E., S. Temmerman, and P. Meire. 2007a. Dynamics of biogenic Si in freshwater tidal marshes. Si regeneration and retention in marsh sediments (Scheldt estuary). Biogeochemistry 82: 41–53.

    Article  CAS  Google Scholar 

  • Struyf, E., S. van Damme, B. Gribsholt, J.J. Middelburg, and P. Meire. 2005a. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium). Marine Ecology Progress Series 303: 51–60.

    Article  CAS  Google Scholar 

  • Struyf, E., and D.J. Conley. 2009. Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment 7: 88–94.

    Article  Google Scholar 

  • Struyf, E., S. van Damme, B. Gribsholt, K. Bal, O. Beauchard, J.J. Middelburg, and P. Meire. 2007b. Phragmites australis and silica cycling in tidal wetlands. Aquatic Botany 87: 134–140.

    Article  CAS  Google Scholar 

  • Struyf, E., S. van Damme, B. Gribsholt, and P. Meire. 2005b. Freshwater marshes as dissolved silica recyclers in an estuarine environment (Schelde estuary, Belgium). Hydrobiologia 540: 69–77.

    Article  CAS  Google Scholar 

  • Suchrow, S., N. Pohlmann, M. Stock, and K. Jensen. 2012. Long-term surface elevation changes in German North Sea salt marshes. Estuarine, Coastal and Shelf Science 98: 71–83.

    Article  Google Scholar 

  • Temmerman, S., G. Govers, S. Wartel, and P. Meire. 2003. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surface Processes and Landforms 28: 739–755.

    Article  Google Scholar 

  • Valéry, L., V. Bouchard, and J. Lefeuvre. 2004. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands 24: 268–276.

    Article  Google Scholar 

  • Vieillard, A.M., R.W. Fulweiler, Z.J. Hughes, and J.C. Carey. 2011. The ebb and flood of silica: quantifying dissolved and biogenic silica fluxes from a temperate salt marsh. Estuarine, Coastal and Shelf Science 95: 415–423.

    Article  CAS  Google Scholar 

  • Wahl, T., J. Jensen, T. Frank, and I. Haigh. 2011. Improved estimates of mean sea level changes in the German Bight over the last 166 years. Ocean Dynamics 61: 701–715.

    Article  Google Scholar 

  • Wang, W., D. Li, J. Zhou, and L. Gao. 2010. Nutrient dynamics in pore water of tidal marshes near the Yangtze Estuary and Hangzhou Bay, China. Environmental Earth Sciences 63: 1067–1077.

    Article  Google Scholar 

  • Webb, E.A., and F.J. Longstaffe. 2000. The oxygen isotopic compositions of silica phytoliths and plant water in grasses: implications for the study of paleoclimate. Geochimica et Cosmochimica Acta 64: 767–780.

    Article  CAS  Google Scholar 

  • Weiss, A., T. Amann, and J. Hartmann. 2013. Silica dynamics of tidal marshes in the inner Elbe Estuary, Germany. Silicon 5: 75–89.

    Article  CAS  Google Scholar 

  • WSV (Federal Waterways and Shipping Administration). 2012. Tidehochwasser bei Cuxhaven-Steubenhöft. Beweissicherung Tideelbe. Available at http://www.portal-tideelbe.de/Funktionen/Liste_der_vorhandenen_Daten/index.php.html. Accessed 10 Nov 2012.

Download references

Acknowledgments

Frauke Müller and Antonia Wanner were funded by the Bauer-Hollman Foundation in the frame work of the research project BASSIA (Biodiversity, management and ecosystem functions of salt marshes in the Wadden Sea National Park of Schleswig-Holstein). Frauke Müller further thanks the DAAD (German Academic Exchange Service) and ESTRADE (Estuary and Wetland Research Graduate School Hamburg as member of LExI (State Excellence Initiative) funded by the Hamburg Science and Research Foundation) for personal PhD funding and organizational support. Eric Struyf was funded by FWO (Research Foundation Flanders). Jens Hartmann was supported by the Cluster of Excellence ‘CliSAP’ (EXC177), University of Hamburg, funded through the German Science Foundation (DFG). We would like to thank our project partner Wadden Sea National Park of Schleswig-Holstein for cooperation, supply of data and research permissions. Sincere thanks are further given to all people who assisted in the field and in the lab and to Andrea Bauer, who analysed the BSi content of salt marsh plant species. Tom van der Spiet and Anne Cools (University of Antwerp) kindly analysed the DSi and BSi content of the water samples. Finally, we thank two anonymous reviewers for their helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Müller.

Appendix

Appendix

Table 3 Mean pore water DSi concentration, conductivity and pH and soil BSi concentrations of an ungrazed Belgian salt marsh (‘Het Zwin’ near Knokke-Heist, 51°22′N, 3°22′E), sampled in a supplemental sampling campaign on 9 August 2011. Sampling locations A and B were located next to two different creeks in a distance of about 400 m to each other. Sampling and analysis were carried out as described in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, F., Struyf, E., Hartmann, J. et al. A Comprehensive Study of Silica Pools and Fluxes in Wadden Sea Salt Marshes. Estuaries and Coasts 36, 1150–1164 (2013). https://doi.org/10.1007/s12237-013-9621-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9621-4

Keywords

Navigation