Estuaries and Coasts

, Volume 36, Issue 6, pp 1237–1252

Spatial Distribution of Dissolved Radon in the Choptank River and Its Tributaries: Implications for Groundwater Discharge and Nitrate Inputs

Article

DOI: 10.1007/s12237-013-9619-y

Cite this article as:
Knee, K.L. & Jordan, T.E. Estuaries and Coasts (2013) 36: 1237. doi:10.1007/s12237-013-9619-y

Abstract

The Choptank River, Chesapeake Bay’s largest eastern-shore tributary, is experiencing increasing nutrient loading and eutrophication. Productivity in the Choptank is predominantly nitrogen-limited, and most nitrogen inputs occur via discharge of high-nitrate groundwater into the river system’s surface waters. However, spatial patterns in the magnitude and quality of groundwater discharge are not well understood. In this study, we surveyed the activity of 222Rn, a natural groundwater tracer, in the Choptank’s main tidal channel, the large tidal tributary Tuckahoe Creek, smaller tidal and non-tidal tributaries around the basin, and groundwater discharging into those tributaries, measuring nitrate and salinity concurrently. 222Rn activities were <100 Bq m−3 in the main tidal channel and 100–700 Bq m−3 in the upper Choptank River and Tuckahoe Creek, while the median Rn activities of fresh tributaries and discharging groundwater were 1,000 and 7,000 Bq m−3, respectively. Nitrate-N concentrations were <0.01 mg L−1 throughout most of the tidal channel, 1.5–3 mg L−1 in the upper reaches, up to 13 mg L−1 in tributary samples, and up to 19.6 mg L−1 in groundwater. Nitrate concentrations in tributary surface water were correlated with Rn activity in three of five sub-watersheds, indicating a groundwater nitrate source. 222Rn and salinity mass balances indicated that Rn-enriched groundwater discharges directly into the Choptank’s tidal waters and suggested that it consists of a mixture of fresh groundwater and brackish re-circulated estuarine water. Further sampling is necessary to constrain the Rn activity and nitrate concentration of discharging groundwater and quantify direct discharge and associated nitrogen inputs.

Keywords

Groundwater discharge Radon Choptank River Chesapeake Bay Nitrate 

Copyright information

© Coastal and Estuarine Research Federation (outside the USA) 2013

Authors and Affiliations

  1. 1.Department of Environmental ScienceAmerican UniversityWashingtonUSA
  2. 2.Smithsonian Environmental Research CenterEdgewaterUSA

Personalised recommendations