Estuaries and Coasts

, Volume 36, Issue 5, pp 881–892 | Cite as

A Modeling and Field Approach to Identify Essential Fish Habitat for Juvenile Bay Whiff (Citharichthys spilopterus) and Southern Flounder (Paralichthys lethostigma) Within the Aransas Bay Complex, TX

  • Bridgette F. Froeschke
  • Gregory W. Stunz
  • Megan M. Reese Robillard
  • Jason Williams
  • John T. Froeschke
Article

Abstract

The goal of this study was to use an ecosystem-based approach to consider the effect of environmental conditions on the distribution and abundance of juvenile bay whiff and southern flounder within the Aransas Bay Complex, TX, USA. Species habitat models for both species were developed using boosted regression trees. Juvenile bay whiff were associated with low temperatures (<15 °C, 20–23 °C), moderate percent dry weight of sediments (25–60 %), salinity >10, and moderate to high dissolved oxygen (6–9 mg O2/l, 10–14 mg/l). Juvenile southern flounder were associated with low temperatures (<15 °C), low percent dry weight of sediment (<25 %), seagrass habitat, shallow depths (<1.2 m), and high dissolved oxygen (>8 mg O2/l). Our results indicate that conservation measures should focus along the eastern side of Aransas Bay and the north corner of Copano Bay to protect essential fish habitat. These findings provide a valuable new tool for fisheries managers to aid in the sustainable management of bay whiff and southern flounder and provide crucial information needed to prioritize areas for habitat conservation.

Keywords

Management Paralichthys lethostigma Citharichthys spilopterus Nursery habitat Boosted regression trees Essential fish habitat 

References

  1. Allen, R.L., and D.M. Baltz. 1997. Distribution and microhabitat use by flatfishes in a Louisiana estuary. Environmental Biology of Fishes 50: 85–103.CrossRefGoogle Scholar
  2. Applebaum, S., P.A. Montagna, and C. Ritter. 2005. Status and trends of dissolved oxygen in Corpus Christi Bay, Texas, U.S.A. Environmental Monitoring and Assessment 107: 297–311.Google Scholar
  3. Breitburg, D. 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25: 767–781.Google Scholar
  4. Castillo-Riviera, M., A. Kobelkowsky, and A.M. Chavez. 2000. Feeding biology of the flatfish Citharichthysspilopterus (Bothidae) in a tropical estuary of Mexico. Journal of Applied Ichthyology 16: 73–78.CrossRefGoogle Scholar
  5. Chittaro, P.M., R.J. Finley, and P.S. Levin. 2009. Spatial and temporal patterns in the contribution of fish from their nursery habitats. Oecologia 160(1): 49–61.CrossRefGoogle Scholar
  6. Crowder, L.B., E.L. Hazen, N. Avissar, R. Bjorkland, C. Latanich, and M.B. Ogburn. 2008. The impacts of fisheries on marine ecosystems and the transition to ecosystem-based management. Annual Review of Ecology, Evolution, and Systematics 39: 259.CrossRefGoogle Scholar
  7. De'ath, G. 2007. Boosted trees for ecological modeling and prediction. Ecology 88: 243–251.CrossRefGoogle Scholar
  8. Deubler, E.E., Jr. 1960. Salinity as a factor in the control of growth and survival of postlarvae of the southern flounder, Paralichthys lethostigma. Bulletin of Marine Science of the Gulf and Caribbean 10: 338–345.Google Scholar
  9. Dulvy, N.K., Y. Sadovy, and J.D. Reynolds. 2003. Extinction vulnerability in marine populations. Fish and Fisheries 4: 25–64.CrossRefGoogle Scholar
  10. Elith, J., C.H. Graham, and R.P. Anderson. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  11. Elith, J., J.R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.CrossRefGoogle Scholar
  12. Fodrie, F.J., K.L. Heck, S.P. Powers Jr., W.M. Graham, K.L. and Robinson. 2010. Climate-related, decadal scale assemblage change of seagrass-associated fishes in the northern Gulf of Mexico. Global Change Biology 16: 48–59.Google Scholar
  13. Friedman, J.H. 2001. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29: 1189–1232.CrossRefGoogle Scholar
  14. Froeschke, B.F., B. Sterba-Boatwright, and G.W. Stunz. 2011. Assessing southern flounder (Paralichthys lethostigma) long-term population trends in the northern Gulf of Mexico using time series analyses. Fisheries Research 108: 291–298.CrossRefGoogle Scholar
  15. Froeschke, J.T., and B.F. Froeschke. 2011. Spatio-temporal predictive model based on environmental factors for juvenile spotted sea trout in Texas estuaries using boosted regression trees. Fisheries Research 111(3): 131–138.CrossRefGoogle Scholar
  16. Froeschke, J.T., G.W. Stunz, and M.L. Wildhaber. 2010. Environmental influences on the occurrence of coastal sharks in estuarine waters. Marine Ecology Progress Series 401: 279–292.CrossRefGoogle Scholar
  17. Gibson, R.N. 1994. Impact of habitat quality and quantity on the recruitment of juvenile flatfishes. Netherlands Journal of Sea Research 32(2): 191–206.CrossRefGoogle Scholar
  18. Glass, L.A., J.R. Rooker, R.T. Kraus, and G.J. Holt. 2008. Distribution, condition, and growth of newly settled southern flounder (Paralichthys lethostigma) in the Galveston Bay Estuary, TX. Journal of Sea Research 59: 259–268.CrossRefGoogle Scholar
  19. Guisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.CrossRefGoogle Scholar
  20. Günter, G.A. 1945. Studies of marine fishes of Texas. Publication of the Institute of Marine Science, University of Texas 1: 1–190.Google Scholar
  21. Halpern, B.S., S. Walbridge, K.A. Selkoe, C.V. Kappel, F. Micheli, C. D'Agrosa, J.F. Bruno, K.S. Casey, C. Ebert, H.E. Fox, R. Fujita, D. Heinemann, H.S. Lenihan, E.M.P. Madin, M.T. Perry, E.R. Selig, M. Spalding, R. Steneck, and R. Watson. 2008. A global map of human impact on marine ecosystems. Science 319: 948–952.CrossRefGoogle Scholar
  22. Hayes, D.B., C.P. Ferreri, and W.W. Taylor. 1996. Linking fish habitat to their population dynamics. Canadian Journal of Fisheries and Aquatic Sciences 53(Suppl. 1): 383–390.CrossRefGoogle Scholar
  23. Hickman, C.P., Jr. 1968. Glomerular filtration and urine flow in the euryhaline Southern Flounder, Paralichthys lethostigma, in seawater. Canadian Journal of Zoology 46: 427–437.Google Scholar
  24. Hilborn, R., T.A. Branch, B. Ernst, A. Magnussum, C.V. Minte-Vera, M.D. Scheurell, and J.L. Valero. 2003. State of the world's fisheries. Annual Review of Environment and Resources 28: 359–399.CrossRefGoogle Scholar
  25. Hiemstra, P.H., E.J. Pebesma, C.J.W. Twenhofel, and G.B.M. Heuvelink. 2008. Real-time automatic interpolation of ambient gammadose rates from the Dutch Radioactivity Monitoring Network. Computers and Geosciences 35(8): 1711–1721. doi:10.1016/j.cageo.2008.10.011.CrossRefGoogle Scholar
  26. Hijmans, R.J., van Etten, J., 2012. Raster: geographic analysis and modeling with raster data. R Package Version 2.0-08.Google Scholar
  27. Hoese, H., and R.H. Moore. 1998. Fishes of the Gulf of Mexico, Texas, Louisiana, and adjacent waters, 2nd ed. College Station: Texas A&M University Press.Google Scholar
  28. Houde, E.D., and E.S. Rutherford. 1993. Recent trends in estuarine fisheries: predictions of fish production and yield. Estuaries and Coast 16(2): 161–176.CrossRefGoogle Scholar
  29. Hughes, T.P., D.R. Bellwood, C. Folke, R.S. Steneck, and J. Wilson. 2005. New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology & Evolution 20(7): 380–386.CrossRefGoogle Scholar
  30. Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque, R.H. Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T.P. Hughes, S. Kidwell, C.B. Lange, H.S. Lenihan, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner, and R.R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–638.CrossRefGoogle Scholar
  31. Leathwick, J.R., J. Elith, M.P. Francis, T. Hastie, and P. Taylor. 2006. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series 321: 267–281.CrossRefGoogle Scholar
  32. Leathwick, J.R., J. Elith, W.L. Chadderton, D. Rowe, and T. Hastie. 2008. Dispersal, disturbance, and the contrasting biogeographies of New Zealand's diadromous and non-diadromous fish species. Journal of Biogeography 35: 1481–1497.CrossRefGoogle Scholar
  33. Levin, P.S., and G.W. Stunz. 2005. Habitat triage for exploited fishes: can we identify essential “essential fish habitat?”. Estuarine, Coastal and Shelf Science 64: 70–78.CrossRefGoogle Scholar
  34. Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.CrossRefGoogle Scholar
  35. Matlock, G.C. 1991. Growth, mortality, and yield of southern flounder in Texas. Northeast Gulf Science 12(1): 61–65.Google Scholar
  36. McEachran, J.D., and J.D. Fechhelm. 2006. Fishes of the Gulf of Mexico. Volume 2: Scorpaeniformes to Tetraodontiformes, 1008. Austin: University of Texas Press.Google Scholar
  37. Montagna, P.A., and J.T. Froeschke. 2009. Long-term biological effects of coastal hypoxia in Corpus Christi Bay, Texas, USA. Journal of Experimental Marine Biology and Ecology 381: S21–S30.Google Scholar
  38. Nañez-James, S.E., G.W. Stunz, and S. Holt. 2009. Habitat use patterns of newly settled southern flounder, Paralichthys lethostigma, in Aransas–Copano Bay, Texas. Estuaries Coast 32: 350–359.CrossRefGoogle Scholar
  39. Natl. Mar. Fish. Serv., 2008. Annual report to Congress on the status of U.S. fisheries 2007. Google Scholar
  40. Pauly, D., V. Christensen, S. Guènette, T.J. Pitcher, U.R. Sumaila, C.J. Walters, R. Watson, and D. Zeller. 2002. Towards sustainability in world fisheries. Nature 418: 689–695.CrossRefGoogle Scholar
  41. Pyke, C.R. 2004. Habitat loss confounds climate change impacts. Frontiers in Ecology and the Environment 2(4): 178–182.CrossRefGoogle Scholar
  42. R Development Core Team. 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org.
  43. Riechers, R., 2008. Regulations committee southern flounder update. Texas Parks and Wildlife Department Regulation Committee, Houston. http://www.tpwd.state.tx.us/business/feedback/meetings/2009/1106/transcripts/regulations_committee/index.phtml
  44. Ruckelshaus, M.H., P.S. Levin, J.B. Johnson, and P.M. Kareiva. 2002. The Pacific salmon wars: what science brings to the challenge of recovering species. Annual Review of Ecology and Systematics 33: 665–706.CrossRefGoogle Scholar
  45. Saveliev, A.A., S.S. Mukharamova, N.A. Chizhikova, R. Budgey, and A.F. Zuur. 2007. Spatially continuous data analysis and modelling. In Analysing ecological data, ed. A.F. Zuur, E.N. Ieno, and G.M. Smith, 341–372. New York: Springer.CrossRefGoogle Scholar
  46. Shutter, B.J. 1990. Population-level indicators of stress. Am. Fish. Soc. Symp. (8): 145-166.Google Scholar
  47. Stickney, R.R., and D.B. White. 1974. Effects of salinity on the growth of Paralichthys lethostigma postlarvae reared under aquaculture conditions. October 14-17, 1973. Proceedings of the Annual Conference of the Southeastern Association of Game and Fish Commissioners 27: 532–540.Google Scholar
  48. Stokes, G.G. 1977. Life history studies of Southern Flounder (Paralichthys lethostigma) and gulf flounder (P. albigutta) in the Aransas Bay area of Texas. Texas Parks and Wildlife Department Technical Series: Number 25.Google Scholar
  49. Stoner, A.W., J.P. Manderson, and J.P. Pessutti. 2001. Spatially explicit analysis of estuarine habitat for juvenile winter flounder: combining generalized additive models and geographic information systems. Marine Ecology Progress Series 213: 253–272.CrossRefGoogle Scholar
  50. Thuiller, W. 2007. Climate change and the ecologist. Nature 448: 550–552.Google Scholar
  51. VanderKooy, S.J. 2000. The flounder fishery of the Gulf of Mexico, United States: a regional management plan. Ocean Springs: GSMFC.Google Scholar
  52. Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings on the National Academy of Sciences 105: 15452–15457.Google Scholar
  53. Walsh, H.J., and D.S. Peters. 1999. Habitat utilization by small flatfishes in a North Carolina estuary. Estuaries 22(3B): 803–813.CrossRefGoogle Scholar
  54. Whaley, S.D., J.J. Burd, and B.A. Robertson. 2007. Using estuarine landscape structure to model distribution patterns in nekton communities and in juveniles of fishery species. Marine Ecology Progress Series 330: 83–99.CrossRefGoogle Scholar
  55. Worm, B., and H.K. Lotze. 2009. Changes in marine biodiversity as an indicator of climate change. In Climate change: observed impacts on Planet Earth, ed. T. Letcher, 263–279. Oxford: Elsevier.Google Scholar
  56. Zhou, S., A.D.M. Smith, A.E. Punt, A.J. Richardson, M. Gibbs, E.A. Fulton, S. Pascoe, C. Bulman, P. Bayliss, and K. Sainsbury. 2010. Ecosystem-based fisheries management requires a change to the selective fishing philosophy. PNAS 107: 9485–9489.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2013

Authors and Affiliations

  • Bridgette F. Froeschke
    • 1
  • Gregory W. Stunz
    • 2
  • Megan M. Reese Robillard
    • 2
  • Jason Williams
    • 2
  • John T. Froeschke
    • 3
  1. 1.University of South FloridaTampaUSA
  2. 2.Harte Research Institute for Gulf of Mexico StudiesTexas A&M University-Corpus ChristiCorpus ChristiUSA
  3. 3.Gulf of Mexico Fishery Management CouncilTampaUSA

Personalised recommendations