Anderson, T.J., and M.M. Yoklavich. 2007. Multiscale habitat associations of deepwater demersal fishes off central California. Fishery Bulletin 105: 168–179.
Google Scholar
Attrill, M.J., and M. Power. 2002. Climatic influence on a marine fish assemblage. Nature 417: 275–278.
CAS
Article
Google Scholar
Baptista, J., F. Martinho, M. Dolbeth, I. Viegas, H. Cabral, and M. Pardal. 2010. Effects of freshwater flow on the fish assemblage of the Mondego estuary (Portugal): Comparison between drought and non-drought years. Marine and Freshwater Research 61: 490–501.
CAS
Article
Google Scholar
Baustian, M.M., J.K. Craig, and N.N. Rabalais. 2009. Effects of summer 2003 hypoxia on macrobenthos and Atlantic croaker foraging selectivity in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 381: S31–S37.
Article
Google Scholar
Beentjes, M.P., B. Bull, R.J. Hurst, and N.W. Bagley. 2002. Demersal fish assemblages along the continental shelf and upper slope of the east coast of the South Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 36: 197–223.
Article
Google Scholar
Bell, G.W., and D.B. Eggleston. 2005. Species-specific avoidance responses by blue crabs and fish to chronic and episodic hypoxia. Marine Biology 146: 761–770.
Article
Google Scholar
Bianchi, G. 1991. Demersal assemblages of the continental shelf and slope edge between the Gulf of Tehuantepec (Mexico) and the Gulf of Papagayo (Costa Rica). Marine Ecology Progress Series 73: 121–140.
Article
Google Scholar
Bianchi, G. 1992. Study of the demersal assemblages of the continental shelf and upper slope off Congo and Gabon, based on the trawl surveys of the RV ‘Dr Fridtjof Nansen’. Marine Ecology Progress Series 85: 9–23.
Article
Google Scholar
Bianchi, T.S., S.F. DiMarco, J.H. Cowan Jr., R.D. Hetland, P. Chapman, J.W. Day, and M.A. Allison. 2010. The science of hypoxia in the Northern Gulf of Mexico: A review. Science of the Total Environment 408: 1471–1484.
CAS
Article
Google Scholar
Bosman, S.H., D.A. Methven, S.C. Courtenay, and J.M. Hanson. 2011. Fish assemblages in a north Atlantic coastal ecosystem: Spatial patterns and environmental correlates. Estuarine, Coastal, and Shelf Science 92: 232–245.
Article
Google Scholar
Breitburg, D.L., K.A. Rose, and J.H. Cowan Jr. 1999. Linking water quality to larval survival: Predation mortality of fish larvae in an oxygen-stratified water column. Marine Ecology Progress Series 178: 39–54.
Article
Google Scholar
Caillouet Jr., C.W., R.A. Hart, and J.M. Nance. 2008. Growth overfishing in the brown shrimp fishery of Texas, Louisiana, and adjoining Gulf of Mexico EEZ. Fisheries Research 92: 289–302.
Article
Google Scholar
Chen, X., S.E. Lohrenz, and D.A. Wiesenburg. 2000. Distribution and controlling mechanisms of primary production on the Louisiana-Texas continental shelf. Journal of Marine Systems 25: 179–207.
Article
Google Scholar
Chittenden, M.E., Jr., and J.D. McEachran. 1976. Composition, ecology and dynamics of demersal fish communities on the northwestern Gulf of Mexico continental shelf, with a similar synopsis for the entire Gulf. Texas A&M University Sea Grant Pub. No. TAMI-SG-76-208. 104 pp.
Chittenden Jr., M.E., and D. Moore. 1977. Composition of the ichthyofauna inhabiting the 110-meter bathymetric contour of the Gulf of Mexico, Mississippi River to the Rio Grande. Northeast Gulf Science 1: 106–114.
Google Scholar
Clarke, K.R., and R.N. Gorley. 2006. Primer v6: User manual/tutorial. Plymouth: PRIMER-E Ltd.
Google Scholar
Clarke, K.R., and R.M. Warwick. 2001. Change in marine communities: An approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory.
Google Scholar
Clarke, K.R., P.J. Somerfield, and R.N. Gorley. 2008. Testing of null hypotheses in exploratory community analyses: Similarity profiles and biota-environmental linkage. Journal of Experimental Marine Biology and Ecology 366: 56–69.
Article
Google Scholar
Collette, B.B., and G. Klein-MacPhee (eds.). 2002. Bigelow and Schroeder's fishes of the gulf of Maine, 3rd ed. Washington: Smithsonian Institution Press.
Google Scholar
Collie, J.S., J.M. Hermsen, P.C. Valentine, and F.P. Almeida. 2005. Effects of fishing on gravel habitats: Assessment and recovery of benthic megafauna on Georges Bank. American Fisheries Society Symposium 41: 325–343.
Google Scholar
Costantini, M., S.A. Ludsin, D.M. Mason, X. Zhang, W.C. Boicourt, and S.B. Brandt. 2008. Effect of hypoxia on habitat quality of striped bass (Morone saxatilis) in Chesapeake Bay. Canadian Journal of Fisheries and Aquatic Sciences 65: 989–1002.
Article
Google Scholar
Cowan Jr., J.H., C.B. Grimes, and R.F. Shaw. 2008. Life history, hysteresis, and habitat changes in Louisiana's coastal ecosystem. Bulletin of Marine Science 83: 197–215.
Google Scholar
Craig, J.K. 2012. Aggregation on the edge: Effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes on the Northern Gulf of Mexico shelf. Marine Ecology Progress Series 445: 75–95.
CAS
Article
Google Scholar
Craig, J.K., and L.B. Crowder. 2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294: 79–94.
Article
Google Scholar
Craig, J.K., L.B. Crowder, and T.A. Henwood. 2005. Spatial distribution of brown shrimp (Farfantepenaeus aztecus) on the northwestern Gulf of Mexico shelf: effects of abundance and hypoxia. Canadian Journal of Fisheries and Aquatic Sciences 62: 1295–1308.
Article
Google Scholar
Craig, J.K., P.C. Gillikin, M.A. Magelnicki, and L.N. May Jr. 2010. Habitat use of cownose rays (Rhinoptera bonasus) in a highly productive, hypoxic continental shelf ecosystem. Fisheries Oceanography 19: 301–317.
Article
Google Scholar
Crowder, L.B., D.T. Crouse, S.S. Heppell, and T.H. Martin. 1994. Predicting the impact of turtle excluder devices on loggerhead sea turtle populations. Ecological Applications 4: 437–445.
Article
Google Scholar
Darnell, R.M., R.E. Defenbaugh, and D. Moore. 1983. Northwestern Gulf shelf bio-atlas: A study of the distribution of demersal fishes and penaeid shrimp of soft bottoms of the continental shelf from the Rio Grande to the Mississippi River Delta. Report 82-04. New Orleans: US Minerals Management Service, Gulf of Mexico OCS Region.
DeMartini, E.E., A.M. Friedlander, S.A. Sandin, and E. Sala. 2008. Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific. Marine Ecology Progress Series 365: 199–215.
Article
Google Scholar
Diamond, S.L., L.G. Cowell, and L.B. Crowder. 2000. Population effects of shrimp trawl bycatch on Atlantic croaker. Canadian Journal of Fisheries and Aquatic Sciences 57: 2010–2021.
Article
Google Scholar
Doyle, M.J., K.L. Mier, M.S. Busby, and R.D. Brodeur. 2002. Regional variation in springtime ichthyoplankton assemblages in the northeast Pacific Ocean. Progress in Oceanography 53: 247–281.
Article
Google Scholar
Duffy-Anderson, J.T., M.S. Busby, K.L. Mier, C.M. Deliyanides, and P.J. Stabeno. 2006. Spatial and temporal patterns in summer ichthyoplankton assemblages on the eastern Bering Sea shelf 1996-2000. Fisheries Oceanography 15: 80–94.
Article
Google Scholar
Eby, L.A., and L.B. Crowder. 2004. Effects of hypoxic disturbance on an estuarine nekton assemblage across multiple scales. Estuaries and Coasts 27: 342–351.
Article
Google Scholar
Environmental Protection Agency (EPA). 2008. Gulf hypoxia action plan 2008 for reducing, mitigating, and controlling hypoxia in the Northern Gulf of Mexico and improving water quality in the Mississippi River basin. Washington: Mississippi River/Gulf of Mexico Watershed Nutrient Task Force.
Essington, T.E., and C.E. Paulsen. 2010. Quantifying hypoxia impacts on an estuarine demersal community using a hierarchical ensemble approach. Ecosystems 13: 1035–1048.
CAS
Article
Google Scholar
Fock, H.O. 2008. Driving-forces for Greenland offshore groundfish assemblages: Interplay of climate, ocean productivity and fisheries. Journal of Northwest Atlantic Fishery Science 39: 103–118.
Article
Google Scholar
Fossheim, M., M.N. Einar, and M. Aschan. 2006. Fish assemblages in the Barents Sea. Marine Biology Research 2: 260–269.
Article
Google Scholar
Francis, M.P., R.J. Hurst, B.H. McArdle, N.W. Bagley, and O.F. Anderson. 2002. New Zealand demersal fish assemblages. Environmental Biology of Fishes 65: 215–234.
Article
Google Scholar
Francis, R.C., M.A. Hixon, M.E. Clarke, S.A. Murawski, and S. Ralston. 2007. Ten commandments of ecosystem-based fisheries scientists. Fisheries 32: 217–231.
Article
Google Scholar
Froese, R., and D. Pauly (eds). 2008. FishBase. World Wide Web electronic publication, version (12/2008) [online]. http://www.fishbase.org. Accessed December 2011.
Gaertner, J.C., J.A. Bertrand, L. Gil de Sola, J.P. Durbec, E. Ferrandis, and A. Souplet. 2005. Large spatial scale variation of demersal fish assemblage structure of the continental shelf of the NW Mediterranean Sea. Marine Ecology Progress Series 297: 245–257.
Article
Google Scholar
Gallaway, B.J., and J.G. Cole. 1999. Reduction of juvenile red snapper bycatch in the U.S. Gulf of Mexico shrimp trawl fishery. North American Journal of Fisheries Management 19: 342–355.
Article
Google Scholar
Gallaway, B.J., M. Longnecker, J.G. Cole, and R.M. Meyer. 1998. Estimates of shrimp trawl bycatch of red snapper (Lutjanus campechanus) in the Gulf of Mexico. In Fishery stock assessment models, 817–839. Alaska Sea Grant College Program, AK-SG-98-01, Alaska.
Giberto, D.A., C.S. Bremec, E.M. Acha, and H. Mianzan. 2004. Large-scale spatial patterns of benthic assemblages in the SW Atlantic: The Río de la Plata estuary and adjacent shelf waters. Estuarine, Coastal and Shelf Science 61: 1–13.
CAS
Article
Google Scholar
Gomes, M.C., R.L. Haedrich, and M.G. Villagarcia. 1995. Spatial and temporal changes in groundfish assemblages on the North-East Newfoundland/Labrador shelf, North-West Atlantic, 1978-1991. Fisheries Oceanography 4: 85–101.
Article
Google Scholar
Gomes, M.C., E. Serrão, and M.F. Borges. 2001. Spatial patterns of groundfish assemblages on the continental shelf of Portugal. ICES Journal of Marine Science 58: 633–647.
Article
Google Scholar
González-Troncoso, D., X. Paz, and X. Cardoso. 2006. Persistence and variation in the distribution of bottom-trawl fish assemblages over the Flemish Cap. Journal of Northwest Atlantic Fishery Science 37: 103–117.
Article
Google Scholar
Gunter, G. 1936. Studies of the destruction of marine fish by shrimp trawlers in Louisiana. Louisiana Conservation Review 5: 18–24.
Google Scholar
Gutherz, E.J. 1976. The northern Gulf of Mexico groundfish fishery, including a brief life history of the croaker (Micropogon undulatus). Proceedings of the Gulf and Caribbean Fisheries Institute. 29: 87–101.
Google Scholar
Gutherz, E.J., G.M. Russell, A.F. Serra, and B.A. Rohr. 1975. Synopsis of the northern Gulf of Mexico industrial and foodfish industries. Marine Fisheries Review 37: 1–11.
Google Scholar
Hazen, E.L., J.K. Craig, C.P. Good, and L.B. Crowder. 2009. Vertical distribution of fish biomass in hypoxic waters on the Gulf of Mexico shelf. Marine Ecology Progress Series 375: 195–207.
Article
Google Scholar
Henriques, M., E.J. Gonçalves, and V.C. Almada. 2007. Rapid shifts in a marine fish assemblage follow fluctuations in winter sea conditions. Marine Ecology Progress Series 340: 259–270.
Article
Google Scholar
Howell, P., and D. Simpson. 1994. Abundance of marine resources in relation to dissolved oxygen in Long Island sound. Estuaries and Coasts 17: 394–402.
Article
Google Scholar
Jacob, W., S. McClatchie, P.K. Probert, and R.J. Hurst. 1998. Demersal fish assemblages off southern New Zealand in relation to depth and temperature. Deep-Sea Research I 45: 2119–2155.
Article
Google Scholar
Jacobson, L.D., and R.D. Vetter. 1996. Bathymetric demography and niche separation of thornyhead rockfish: Sebastolobus alascanus and Sebastolobus altivelis. Canadian Journal of Fisheries and Aquatic Sciences 53: 600–609.
Article
Google Scholar
James, N.C., A.K. Whitfield, and P.D. Cowley. 2008. Long-term stability of the fish assemblages in a warm-temperate South African estuary. Estuarine, Coastal and Shelf Science 76: 723–738.
Article
Google Scholar
Jaureguizar, A.J., R. Menni, R. Guerrero, and C. Lasta. 2004. Environmental factors structuring fish communities of the Río de la Plata estuary. Fisheries Research 66: 195–211.
Article
Google Scholar
Jaureguizar, A.J., R. Menni, C. Lasta, and R. Guerrero. 2006. Fish assemblages of the northern Argentine coastal system: Spatial patterns and their temporal variations. Fisheries Oceanography 15: 326–344.
Article
Google Scholar
Jay, C.V. 1996. Distribution of bottom-trawl fish assemblages over the continental shelf and upper slope of the U.S. West Coast, 1977-1992. Canadian Journal of Fisheries and Aquatic Sciences 53: 1203–1225.
Article
Google Scholar
Jeffers, S.A., W.F. Patterson III, and J.H. Cowan Jr. 2008. Habitat and bycatch effects on population parameters of inshore lizardfish (Synodus foetens) in the north central Gulf of Mexico. Fishery Bulletin 106: 417–426.
Google Scholar
Justic, D., V.J. Bierman Jr., D. Scavia, and R.D. Hetland. 2007. Forecasting gulf's hypoxia: The next 50 years? Estuaries and Coasts 30: 791–801.
CAS
Google Scholar
Keister, J.E., E.D. Houde, and D.L. Breitburg. 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Marine Ecology Progress Series 205: 43–59.
Article
Google Scholar
Keller, A.A., V. Simon, F. Chan, W.W. Wakefield, M.E. Clarke, J.A. Barth, D. Kamikawa, and E.L. Fruh. 2010. Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the US West Coast. Fisheries Oceanography 19: 76–87.
Article
Google Scholar
Kodama, K., M. Oyama, G. Kume, S. Serizawa, H. Shiraishi, Y. Shibata, M. Shimizu, and T. Horiguchi. 2010. Impaired megabenthic community structure caused by summer hypoxia in a eutrophic coastal bay. Ecotoxicology 19: 479–492.
CAS
Article
Google Scholar
Larsson, P., and W. Lampert. 2011. Experimental evidence of a low oxygen refuge for large zooplankton. Limnology and Oceanography 56: 1682–1688.
Article
Google Scholar
Levin, P.S., E.E. Holmes, K.R. Piner, and C.J. Harvey. 2005. Shifts in a Pacific ocean fish assemblage: The potential influence of exploitation. Conservation Biology 20: 1181–1190.
Article
Google Scholar
Lohr, S.L. 1999. Sampling: Design and analysis. Pacific Grove: Duxbury Press.
Google Scholar
Long, W.C., and R.D. Seitz. 2008. Trophic interactions under stress: Hypoxia enhances foraging in an estuarine food web. Marine Ecology Progress Series 362: 59–68.
Article
Google Scholar
Ludsin, S.A., X. Zhang, S.B. Brandt, M.R. Roman, W.C. Boicourt, D.M. Mason, and M. Costantini. 2009. Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: Implications for food web interactions and fish recruitment. Journal of Experimental Marine Biology and Ecology 381: S121–S131.
Article
Google Scholar
Macal, J. 2002. Potential effects of hypoxia on shrimpers and implications for red snapper bycatch in the northwestern Gulf of Mexico. MS thesis. Durham: Duke University.
Mangel, M., and P.S. Levin. 2005. Regime, phase and paradigm shifts: Making community ecology the basic science for fisheries. Philosophical Transactions of the Royal Society B 360: 95–105.
Article
Google Scholar
Marasco, R.J., D. Goodman, C.B. Grimes, P.W. Lawson, A.E. Punt, and T.J. Quinn. 2007. Ecosystem-based fisheries management: Some practical suggestions. Canadian Journal of Fisheries and Aquatic Sciences 64: 928–939.
Article
Google Scholar
Martino, E.J., and K.W. Able. 2003. Fish assemblages across the marine to low salinity transition zone of a temperate estuary. Estuarine, Coastal, and Shelf Science 56: 969–987.
Article
Google Scholar
McCullagh, P., and J.A. Nelder. 1989. Generalized linear models. Boca Raton: Chapman and Hall.
Google Scholar
McDaniel, C.J., L.B. Crowder, and J.A. Priddy. 2000. Spatial dynamics of sea turtle abundance and shrimping intensity in the U.S. Gulf of Mexico. Conservation Ecology 4(1): 15.
Google Scholar
McEachran, J.D., and J.D. Fechhelm. 1998. Fishes of the Gulf of Mexico, Vol. 1: Myxiniformes to Gasterosteiformes. Austin: University of Texas Press.
Google Scholar
Menezes, G.M., M.F. Sigler, H.M. Silva, and M.R. Pinho. 2006. Structure and zonation of demersal fish assemblages off the Azores Archipelago (mid-Atlantic). Marine Ecology Progress Series 324: 241–260.
Article
Google Scholar
Moore, D., H.A. Brusher, and L. Trent. 1970. Relative abundance, seasonal distribution, and species composition of demersal fishes off Louisiana and Texas, 1962-1964. Contributions in Marine Science 15: 45–70.
Google Scholar
Moranta, J., M. Palmer, G. Morey, A. Ruiz, and B. Morales-Nin. 2006. Multi-scale spatial variability in fish assemblages associated with Posidonia oceanica meadows in the Western Mediterranean Sea. Estuarine, Coastal and Shelf Science 68: 579–592.
Article
Google Scholar
Nance, J.M., and E. Scott-Denton. 1997. Bycatch in the Gulf of Mexico shrimp fishery. In Developing and sustaining world fisheries resources: The state of science and management, 2nd World Fisheries Congress, ed. D.A. Hancock, D.C. Smith, A. Grant, and J.P. Beumer, 98–102. Collingwood: CSIRO Publishing.
Google Scholar
Nestlerode, J.A., and R.J. Diaz. 1998. Effects of periodic environmental hypoxia on predation of a tethered polychaete, Glycera americana: Implications for trophic dynamics. Marine Ecology Progress Series 172: 185–195.
Article
Google Scholar
Neuenfeldt, S. 2002. The influence of oxygen saturation on the distributional overlap of predator (cod, Gadus morhua) and prey (herring, Clupea harengus) in the Bornholm Basin of the Baltic Sea. Fisheries Oceanography 11: 11–17.
Article
Google Scholar
Neuenfeldt, S., K.H. Andersen, and H.H. Hinrichsen. 2009. Some Atlantic cod Gadus morhua in the Baltic Sea visit hypoxic water briefly but often. Journal of Fish Biology 75: 290–294.
CAS
Article
Google Scholar
Ortiz, M., C.M. Legault, and N.M. Ehrhardt. 2000. An alternative method for estimating bycatch from the U.S. shrimp trawl fishery in the Gulf of Mexico, 1972-1995. Fishery Bulletin 98: 583–599.
Google Scholar
Pihl, L., S.P. Baden, and R.J. Diaz. 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108: 349–360.
Article
Google Scholar
Prince, E.D., and C.P. Goodyear. 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries Oceanography 15: 451–464.
Article
Google Scholar
Rabalais, N.N., D.E. Harper Jr., and R.E. Turner. 2001. Responses of nekton and demersal and benthic fauna to decreasing oxygen concentrations. In Coastal hypoxia: Consequences for living resources and ecosystems, ed. N.N. Rabalais and R.E. Turner, 115–128. Washington: American Geophysical Union.
Chapter
Google Scholar
Rabalais, N.N., R.E. Turner, and W.J. Wiseman. 2002. Gulf of Mexico hypoxia, aka “The dead zone”. Annual Review of Ecology and Systematics 33: 235–263.
Article
Google Scholar
Rabalais, N.N., R.E. Turner, B.K. Sen Gupta, E. Platon, and M.L. Parsons. 2007a. Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecological Applications 17(Supplement): 129–143.
Article
Google Scholar
Rabalais, N.N., R.E. Turner, B.K. Sen Gupta, D.F. Boesch, P. Chapman, and M.C. Murrell. 2007b. Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia? Estuaries and Coasts 30: 753–772.
CAS
Google Scholar
Rabalais, N.N., R.J. Diaz, L.A. Levin, R.E. Turner, D. Gilbert, and J. Zhang. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7: 585–619.
CAS
Article
Google Scholar
Rahel, F.J., and J.W. Nutzman. 1994. Foraging in a lethal environment: Fish predation in hypoxic waters of a stratified lake. Ecology 75: 1246–1253.
Article
Google Scholar
Rooper, C.N., and M.H. Martin. 2009. Predicting presence and abundance of demersal fishes: A model application to shortspine thornyhead Sebastolobus alascanus. Marine Ecology Progress Series 379: 253–266.
Article
Google Scholar
Rueda, M., and O. Defeo. 2003. Spatial structure of fish assemblages in a tropical estuarine lagoon: Combining multivariate and geostatistical techniques. Journal of Experimental Marine Biology and Ecology 296: 93–112.
Article
Google Scholar
Shepherd, T.D., and R.A. Myers. 2005. Direct and indirect fishery effects on small coastal elasmobranchs in the northern Gulf of Mexico. Ecology Letters 8: 1095–1104.
Article
Google Scholar
Snickars, M., A. Sandström, A. Lappalainen, J. Mattila, K. Rosqvist, and L. Urho. 2009. Fish assemblages in coastal lagoons in land-uplift succession: The relative importance of local and regional environmental gradients. Estuarine, Coastal and Shelf Science 81: 247–256.
Article
Google Scholar
Sousa, P., M. Azevedo, and M.C. Gomes. 2005. Demersal assemblages off Portugal: Mapping, seasonal, and temporal patterns. Fisheries Research 75: 120–137.
Article
Google Scholar
Stierhoff, K.L., T.E. Targett, and K. Miller. 2006. Ecophysiological responses of juvenile summer and winter flounder to hypoxia: Experimental and modeling analyses of effects on estuarine nursery quality. Marine Ecology Progress Series 325: 255–266.
CAS
Article
Google Scholar
Stierhoff, K.L., R.M. Tyler, and T.E. Targett. 2009. Hypoxia tolerance of juvenile weakfish (Cynoscion regalis): Laboratory assessment of growth and behavioral responses. Journal of Experimental Marine Biology and Ecology 381: S173–S179.
Article
Google Scholar
Taylor, J.C., P.S. Rand, and J. Jenkins. 2007. Swimming behavior of juvenile anchovies (Anchoa spp.) in an episodically hypoxic estuary: Implications for individual energetics and trophic dynamics. Marine Biology 152: 939–957.
Article
Google Scholar
Thomas, P., and S. Rahman. 2012. Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proceedings of the Royal Society of London, B 1726: 28–38.
Article
CAS
Google Scholar
Tian, Y., H. Kidokoro, T. Watanabe, and N. Iguchi. 2008. The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: Evidence from historical data and possible mechanisms. Progress in Oceanography 77: 127–145.
Article
Google Scholar
Tolimieri, N., and P.S. Levin. 2006. Assemblage structure of Eastern Pacific groundfishes on the U.S. continental slope in relation to physical and environmental variables. Transactions of the American Fisheries Society 135: 317–332.
Article
Google Scholar
Turner, R.E., N.N. Rabalais, and D. Justic. 2008. Gulf of Mexico hypoxia: Alternate states and a legacy. Environmental Science and Technology 42: 2323–2327.
CAS
Article
Google Scholar
Tyler, R.M., and T.E. Targett. 2007. Juvenile weakfish Cynoscion regalis distribution in relation to diel-cycling dissolved oxygen in an estuarine tributary. Marine Ecology Progress Series 333: 257–269.
CAS
Article
Google Scholar
Vanderploeg, H.A., S.A. Ludsin, J.F. Cavaletto, T.O. Hook, S.A. Pothoven, S.B. Brandt, J.R. Liebig, and G.A. Lang. 2009. Hypoxic zones as habitat for zooplankton in Lake Erie: Refuges from predation or exclusion zones? Journal of Experimental Marine Biology and Ecology 381: S108–S120.
Article
Google Scholar
Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Science 105: 15452–15457.
CAS
Article
Google Scholar
Wannamaker, C.A., and J.A. Rice. 2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology and Ecology 249: 145–163.
Article
Google Scholar
Zhang, H., S.A. Ludsin, D.M. Mason, A.T. Adamack, S.B. Brandt, X. Zhang, D.G. Kimmel, M.R. Roman, and W.C. Boicourt. 2009. Hypoxia-driven changes in the behavior and spatial distribution of pelagic fish and mesozooplankton in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 381: S80–S91.
Article
Google Scholar
Zimmerman, R.J., and J.M. Nance. 2001. Effects of hypoxia on the shrimp fishery of Louisiana and Texas. In Coastal hypoxia: Consequences for living resources and ecosystems, ed. N.N. Rabalais and R.E. Turner, 293–310. Washington: American Geophysical Union.
Chapter
Google Scholar