Skip to main content

Ecological Impacts of Macroalgal Blooms on Salt Marsh Communities

Abstract

Despite excessive growth of macroalgae in estuarine systems, little research has been done to examine the impacts of increased algal biomass that drifts into nearby salt marshes and accumulates on intertidal flats. The accumulation of macroalgal mats and subsequent decomposition-related releases of limiting nutrients may potentially alter marsh communities and impact multiple trophic levels. We conducted a 2-year in situ study, as well as laboratory mesocosm experiments, to determine the fate of these nutrients and any bottom-up impacts from the blooms on the dominant salt marsh plant (Spartina alterniflora) and herbivores. Mesocosm results showed that macroalgal decomposition had a positive impact on sediment nitrogen concentrations, as well as S. alterniflora growth rates. In contrast, our in situ results suggested that S. alterniflora growth was hindered by the presence of macroalgal mats. From our results, we suggest that macroalgal accumulation and subsequent release of nitrogen during decomposition may be beneficial in nitrogen limited areas. However, as marshes are becoming increasingly eutrophic, releasing lower marsh plants from nitrogen limitation, this accumulation of macroalgal biomass may hinder S. alterniflora growth through smothering and breakage of culms. As macroalgal blooms are predicted to intensify with rising temperatures and increased eutrophication, the ecological impacts associated with these changes need to be continuously monitored in order to preserve these fragile ecosystems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alexander, C., and M. Robinson. 2006. Quantifying the ecological significance of marsh shading: The impact of private recreational docks in coastal Georgia. Brunswick: Georgia Department of Natural Resources. Coastal Resources Division.

    Google Scholar 

  • Bertness, M.D., and A.M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57: 129–147.

    Article  Google Scholar 

  • Bertness, M.D., P.J. Ewanchuk, and B.R. Silliman. 2002. Anthropogenic modificaiton of New England salt marsh landscapes. Proceedings of the National Academy of Science USA 99: 1395–1398.

    Article  CAS  Google Scholar 

  • Bertness, M.D., C. Crain, C. Holdredge, and N. Sala. 2008. Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology 22: 131–139.

    Article  Google Scholar 

  • Boyer, K.E., and P. Fong. 2005. Macroalgal-mediated transfers of water column nitrogen to intertidal sediments and salt marsh plants. Journal of Experimental Marine Biology and Ecology 321: 59–69.

    Article  CAS  Google Scholar 

  • Boyer, K.E., and J.B. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh. Ecological Applications 8: 692–705.

    Article  Google Scholar 

  • Bruno, J.F., K.E. Boyer, J.E. Duffy, S.C. Lee, and J.S. Kertesz. 2005. Effects of macroalgal species identity and richness on primary production in benthic marine communities. Ecology Letters 8: 1165–1174.

    Article  Google Scholar 

  • Buchsbaum, R., I. Valiela, T. Swain, M. Dzierzeski, and S. Allen. 1991. Available and refractory nitrogen in detritus of coastal vascular plants and macroalgae. Marine Ecology Progress Series 72: 131–143.

    Article  Google Scholar 

  • Castaldelli, G., D.T. Welsh, G. Flachi, G. Zucchini, G. Colombo, R. Rossi, and E.A. Fano. 2003. Decomposition dynamics of the bloom forming macroalga Ulva rigida C. Agardh determined using a 14C-carbon radio-tracer technique. Aquatic Botany 75: 111–122.

    Article  Google Scholar 

  • Dai, T., and R.G. Weiegert. 1997. A field study of photosynthetic capacity and its response to nitrogen fertilization in Spartina alterniflora. Estuarine, Coastal and Shelf Science 45: 273–283.

    Article  Google Scholar 

  • Darby, F.A., and R.E. Turner. 2008. Below- and aboveground biomass of Spartina alterniflora: Response to nutrient addition in a Louisiana salt marsh. Estuaries and Coasts 31: 326–334.

    Article  CAS  Google Scholar 

  • Denno, R.F., and G.K. Roderick. 1992. Density-related dispersal in planthoppers: Effects of interspecific crowding. Ecology 73: 1323–1334.

    Article  Google Scholar 

  • Denno, R.F., C. Gratton, M.A. Peterson, G.A. Langellotto, D.L. Finke, and A.F. Huberty. 2002. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83: 1433–1458.

    Article  Google Scholar 

  • Drake, D.C., B.J. Peterson, L.A. Deegan, L.A. Harris, E.E. Miller, and R.S. Warren. 2008. Plant nitrogen dynamics in fertilized and natural New England salt marshes: A paired 15 N tracer study. Marine Ecology Progress Series 354: 35–46.

    Article  CAS  Google Scholar 

  • Garcia-Robledo, E., A. Corzo, J. Garcia de Lomas, and S.A. van Bergeijk. 2008. Biogeochemical effects of macroalgal decomposition on intertidal microbenthos: A microcosm experiment. Marine Ecology Progress Series 256: 139–151.

    Article  Google Scholar 

  • Gedan, K.B., A.H. Altieri, and M.D. Bertness. 2011. Uncertain future of New England salt marshes. Marine Ecology Progress Series 434: 229–237.

    Article  Google Scholar 

  • Gerard, V.A. 1999. Positive interactions between cordgrass, Spartina alterniflora, and the brown alga, Ascophyllum nodosum ecad scorpioides, in a mid-Atlantic coast salt marsh. Journal of Experimental Marine Biology and Ecology 239: 157–164.

    Article  Google Scholar 

  • Granger, S., M. Brush, B. Buckley, M. Traber, M. Richardson, and S. W. Nixon. 2000. An assessment of eutrophication in Greenwich Bay. Paper No. 1. in Restoring Water Quality in Greenwich Bay: A Whitepaper Series, M. Schwartz, ed. Rhode Island Sea Grant, Narragansett RI

  • Gratton, C., and R.F. Denno. 2003. Inter-year carryover effects of a nutrient pulse on Spartina plants, herbivores, and natural enemies. Ecology 84: 2692–2707.

    Article  Google Scholar 

  • Hanisak, M.D. 1993. Nitrogen release from decomposing seaweeds: Species and temperature effects. Journal of Applied Phycology 5: 175–181.

    Article  Google Scholar 

  • Hardison, A.K., E.A. Canuel, I.C. Anderson, and B. Veuger. 2010. Fate of macroalgae in benthic systems: Carbon and nitrogen cycling within the microbial community. Marine Ecology Progress Series 414: 41–55.

    Article  CAS  Google Scholar 

  • Harley, C.D.G., A.R. Hughes, K.M. Hultgren, B.G. Miner, C.J.B. Sorte, C.S. Thornber, L.F. Rodriguez, L. Tomanek, and S.L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Article  Google Scholar 

  • Hauxwell, J., J. McClelland, P.J. Behr, and I. Valiela. 1998. Relative importance of grazing and nutrient controls of macroalgal biomass in three temperate shallow estuaries. Estuaries 21: 347–360.

    Article  Google Scholar 

  • Hauxwell, J., J. Cebrian, C. Furlong, and I. Valiela. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82: 1007–1022.

    Google Scholar 

  • Hopkinson, C.S., and J.P. Schubauer. 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoid Spartina alterniflora. Ecology 65: 961–969.

    Article  Google Scholar 

  • IPCC. 2007. Climate change 2007: Synthesis report. Spain: Valencia.

    Google Scholar 

  • Koch, M.S., I.A. Mendelssohn, and K.L. McKee. 1990. Mechanisms for the hydrogen sulfide-induced growth limitation of Spartina alterniflora and Panicum hemitomon. Limnology and Oceanography 35: 399–408.

    Article  CAS  Google Scholar 

  • Lee, V., and S. Olsen. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries 8: 191–202.

    Article  Google Scholar 

  • Levine, J.M., J.S. Brewer, and M.D. Bertness. 1998. Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology 86: 285–292.

    Article  Google Scholar 

  • Lotze, H.K., and B. Worm. 2002. Complex interactions of climatic and ecological controls on macroalgal recruitment. Limnology and Oceanography 47: 1734–1741.

    Article  Google Scholar 

  • McFarlin, C.R., J.S. Brewer, T.L. Buck, and S.C. Pennings. 2008. Impact of fertilization on a salt marsh food web in Georgia. Estuaries and Coasts 31: 313–325.

    Article  Google Scholar 

  • Mendelssohn, I.A. 1979. Nitrogen metabolism in the height forms of Spartina alterniflora in North Carolina. Ecology 60: 574–584.

    Article  CAS  Google Scholar 

  • Naldi, M., and P.A. Wheeler. 2002. 15 N measurements of ammonium and nitrate uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta): Comparison of net nutrient disappearance, release of ammonium and nitrate, and 15 N accumulation in algal tissue. Journal of Phycology 38: 135–144.

    Article  Google Scholar 

  • Newton, C., and C.S. Thornber. 2012. Abundance and species composition surveys of macroalgal blooms in Rhode Island salt marshes. Northeastern Naturalist 19: 501–516.

    Article  Google Scholar 

  • Oviatt, C.A. 2008. Impacts of nutrients on Narragansett Bay productivity: A gradient approach. In Science for ecosystem-based management: Narragansett Bay in the 21st century, ed. A. Desbonnet and B.A. Costa-Pierce, 523–543. New York: Springer.

    Chapter  Google Scholar 

  • Pennings, S.C., C.M. Clark, E.E. Cleland, S.L. Collins, L. Gough, K.L. Gross, D.G. Milchunas, and K.N. Suding. 2005. Do individual plant species show predictable responses to nitrogen addition across multiple experiments? Oikos 110: 547–555.

    Article  Google Scholar 

  • Piovia-Scott, J., D.A. Spiller, and T.W. Schoener. 2011. Effects of experimental seaweed deposition on lizard and ant predation in an island food web. Science 331: 461–463.

    Article  CAS  Google Scholar 

  • Polis, G.A., and S.D. Hurd. 1996. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. The American Naturalist 147: 396–423.

    Article  Google Scholar 

  • Posey, M., C. Powell, L. Cahoon, and D. Lindquist. 1995. Top down vs. bottom up control of benthic community composition on an intertidal flat. Journal of Experimental Marine Biology and Ecology 185: 19–31.

    Article  Google Scholar 

  • Pregnall, A.M., and P.P. Rudy. 1985. Contribution of green macroalgal mats (Enteromorpha spp.) to seasonal production in an estuary. Marine Ecology Progress Series 24: 167–176.

    Article  Google Scholar 

  • Pruell, R.J., B.K. Taplin, J.L. Lake, and S. Jararaman. 2006. Nitrogen isotope ratios in estuarine biota collected along a nutrient gradient in Narragansett Bay, Rhode Island, USA. Marine Pollution Bulletin 52: 612–620.

    Article  CAS  Google Scholar 

  • Rhode Island Department of Environmental Management. 2003. The Greenwich Bay Fish Kill — August 2003: Causes, Impacts and Responses.

  • Rosemond, A.D., C. Pringle, M.A. Ramirez, and M.J. Paul. 2001. A test of top-down and bottom-up control in a detritus-based food web. Ecology 82: 2279–2293.

    Article  Google Scholar 

  • Rosenberg, R. 1985. Eutrophication — the future marine coastal nuisance. Marine Pollution Bulletin 16: 227–231.

    Article  CAS  Google Scholar 

  • Rosenberg, G., and J. Ramus. 1984. Uptake of inorganic nitrogen and seaweed surface area:volume ratios. Aquatic Botany 19: 65–72.

    Article  CAS  Google Scholar 

  • Sala, N.M., M.D. Bertness, and B.R. Silliman. 2008. The dynamics of bottom-up and top-down control in a New England salt marsh. Oikos 117: 1050–1056.

    Article  Google Scholar 

  • Sanger, D.M., A.F. Holland, and C. Gainey. 2004. Cumulative impacts of dock shading on Spartina alterniflora in South Carolina estuaries. Environmental Management 33: 741–748.

    Google Scholar 

  • Schuth, J. 1997. Measuring nitrogen in soils. Teaching Water Science. HACH Company, Technical Training Center.

  • Sfriso, A., B. Pavoni, A. Marcomini, and A.A. Orio. 1992. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice. Estuaries 15: 517–528.

    Article  CAS  Google Scholar 

  • Shaked, Y., Y. Erel, and A. Sukenik. 2002. Phytoplankton-mediated redox cycle of iron in the epilimnion of Lake Kinneret. Environmental Science and Technology 36: 460–467.

    Article  CAS  Google Scholar 

  • Smart, R.M., and J.W. Barko. 1980. Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora. Ecology 61: 630–638.

    Article  CAS  Google Scholar 

  • Smith, J.E., M. Shaw, R.A. Edwards, D. Obura, O. Pantos, E. Sala, S.A. Sandin, S. Smriga, M. Hatay, and F.L. Rohwer. 2006. Indirect effects of algae on coral: Algal-mediated, microbe-induced coral mortality. Ecology Letters 9: 835–845.

    Article  Google Scholar 

  • Spiller, D.A., J. Piovia-Scott, A.N. Wright, L.H. Yang, G. Takimoto, T.W. Schoener, and T. Iwata. 2010. Marine subsidies have multiple effects on coastal food webs. Ecology 9: 1424–1434.

    Article  Google Scholar 

  • Sullivan, M.J., and F.C. Daiber. 1974. Response in production of cord grass, Spartina alterniflora, to inorganic nitrogen and phosphorus fertilizer. Chesapeake Science 15: 121–123.

    Article  Google Scholar 

  • Taylor, D.I., S.W. Nixon, S.L. Granger, B.A. Buckley, J.P. McMohon, and H.-J. Lin. 1995. Responses of coastal lagoon plant communities to different forms of nutrient enrichment — a mesocosm experiement. Aquatic Botany 52: 19–34.

    Article  Google Scholar 

  • Thomsen, M.S., and K. McGlathery. 2006. Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. Journal of Experimental Marine Biology and Ecology 328: 22–34.

    Article  Google Scholar 

  • Thomsen, M.S., K.J. McGlathery, A. Schwarzschild, and B.R. Silliman. 2009. Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biological Invasions 11: 2303–2316.

    Article  Google Scholar 

  • Thornber, C.S., P. DiMilla, S.W. Nixon, and R.A. McKinney. 2008. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae. Marine Pollution Bulletin 56: 261–269.

    Article  CAS  Google Scholar 

  • Tyler, A.C., and K.J. McGlathery. 2006. Uptake and release of nitrogen by the macroalgae Gracilaria vermiculophylla (Rhodophyta). Journal of Phycology 42: 515–525.

    Article  CAS  Google Scholar 

  • Tyler, A.C., K.J. McGlathery, and I.C. Anderson. 2001. Macroalgae mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Estuarine, Coastal and Shelf Science 53: 155–168.

    Article  CAS  Google Scholar 

  • Udell, H.F., J. Zarudksy, T.E. Doheny, and P.R. Burkholder. 1969. Productivity and nutrient values of plants growing in the salt marshes of the town of Hempstead, Long Island. Bulletin of the Torrey Botanical Club 96: 42–51.

    Article  Google Scholar 

  • Underwood, A.J. 1997. Experiments in ecology. New York: Cambridge University Press.

    Google Scholar 

  • Valiela, I., and J.M. Teal. 1974. Nutrient limitation in salt marsh vegitation. In Ecology of Halophytes, ed. R.J. Reimold and W.H. Queen, 547–563. New York: Academic Press, Inc.

    Google Scholar 

  • Valiela, I., J.M. Teal, S.D. Allen, R. van Etten, D. Groehringer, and S. Volkmann. 1985. Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 98: 29–54.

    Article  Google Scholar 

  • Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.

    Article  Google Scholar 

  • Willis, R.B., and C.E. Gentry. 1987. Automated method for determining nitrate and nitrite in water and soil extracts. Communications in Soil Science and Plant Analysis 18: 625–636.

    Article  CAS  Google Scholar 

  • Wimp, G.M., S.M. Murphy, D.L. Finke, A.F. Huberty, and R.F. Denno. 2010. Increased primary production shifts the structure and composition of a terrestrial arthropod community. Ecology 9: 3303–3311.

    Article  Google Scholar 

  • Worm, B., and H.K. Lotze. 2006. Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnology and Oceanography 51: 569–579.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by NOAA grant #NA09NMF4720259: The Narragansett Bay Window Program 2009, Quebec–Labrador Foundation Sounds Conservancy, the University of Rhode Island and Rhode Island Sea Grant. The Rhode Island Department of Environmental Management and the Rocky Hill School (E. Greenwich, R.I.) have provided access to field sites. We thank P. Ewanchuk, P. Kelly, S. Yonis, S. Alm, S. Rinehart, A. Heinze, K. Hyman, N. Millette, M. Nepshinksy and E. Vincent for their field and laboratory assistance. J.B. Ramsay provided assistance with figures. Also thanks to F. Golet, M. Guidone, E. Preisser, N. Rohr and three anonymous reviewers for helpful comments on this research and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Newton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Newton, C., Thornber, C. Ecological Impacts of Macroalgal Blooms on Salt Marsh Communities. Estuaries and Coasts 36, 365–376 (2013). https://doi.org/10.1007/s12237-012-9565-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9565-0

Keywords

  • Macroalgal blooms
  • Nutrient cycling
  • Spartina alterniflora
  • Bottom-up control