Skip to main content

Advertisement

Log in

Carbonate Mineral Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

After a pelagic larval phase, infaunal bivalves undergo metamorphosis and transition to the underlying sediments to begin the benthic stage of their life history, where they explore and then either accept or reject sediments. Although the settlement cues used by juvenile infaunal bivalves are poorly understood, here we provide evidence that carbonate saturation state is a significant chemical cue in both direct observation laboratory studies and field manipulations. In the laboratory, plantigrade-stage Mercenaria mercenaria (200 μm shell height) showed a significant positive relationship between percent burrowed and Ωaragonite, with an increasing probability of settlement with increasing saturation state. In the field, we increased bivalve recruitment by a factor of three in a 30-day field study by raising the pH (∼0.3) and saturation state of surface sediments by buffering sediments with crushed shell (CaCO3). The susceptibility of infaunal bivalves to dissolution mortality and the tight coupling of other sedimentary biogeochemical processes with carbonate dynamics suggest that mineral thermodynamics may be an overarching cue new settlers are responding to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aller, R.C. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology 90: 79–95.

    Article  CAS  Google Scholar 

  • Armonies, W. 1996. Changes in distribution patterns of O-group bivalves in the Wadden Sea; Byssus-drifting releases juveniles from the constraints of hydrography. Journal of Shellfish Research 35(4): 323–334.

    Google Scholar 

  • Ayers, J. 1956. Population dynamics of the marine clam, Mya arenaria. Limnology and Oceanography 1(1): 26–34.

    Article  Google Scholar 

  • Bowen, J., and H. Hunt. 2009. Settlement and recruitment patterns of the soft shell clam, Mya arenaria, on the northern shore of Bay of Fundy, Canada. Estuaries and Coasts 32: 758–72.

    Article  Google Scholar 

  • Brecevic, N. 1989. Solubility of amorphous calcium carbonate. Journal of Crystal Growth 98: 504–510.

    Article  CAS  Google Scholar 

  • Butman, C.A., J.P. Grassle, and C.M. Webb. 1988. Substrate choices made by marine larvae settling in still water and in a flume flow. Nature 333: 771–773.

    Article  Google Scholar 

  • Carriker, M.R. 1961. Interrelations of functional morphology, behavior, and autecology in early stages of the bivalve Mercenaria mercenaria. Journal of the Elisha Mitchell Scientific Society 77(2): 168–241.

    Google Scholar 

  • Carriker, M.R. 2001. Functional morphology and behavior of veligers and early juveniles. In Biology of the hard clam, ed. J. Kraeuther and M. Castagna, 283–303. New York: Elsevier.

    Chapter  Google Scholar 

  • Cummings, V., K. Vopel, and S. Thrush. 2009. Terrigenous deposits in coastal marine habitats: influences on sediment geochemistry and behavior of post settlement bivalves. Marine Ecology Progress Series 383: 173–185.

    Article  CAS  Google Scholar 

  • Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research 34: 1733–1743.

    Article  CAS  Google Scholar 

  • Edmond, J.M. 1970. High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. Deep Sea Research 17: 737–750.

    CAS  Google Scholar 

  • Emerson, C.W., and J. Grant. 1991. The control of soft shell clam (Mya arenaria) recruitment on inter-tidal sandflats by bedload sediment transport. Limnology and Oceanography 36(7): 1288–1300.

    Article  Google Scholar 

  • Engstrom, S., and R. Marinelli. 2005. Recruitment responses of benthic infauna to manipulated sediment geochemical properties in natural flows. Journal of Marine Research 63: 407–36.

    Article  CAS  Google Scholar 

  • Feely, R.A., C. Sabine, K. Lee, W. Berelson, J. Kleypas, V. Fabry, and F. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682): 362–366.

    Article  CAS  Google Scholar 

  • Fritz, L.W. 2001. Shell structure and age determination. In Biology of the hard clam, ed. J.N. Kraeuter and M. Castagna, 53–76. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gallager, S.M., R. Mann, and G.C. Sasaki. 1986. Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture 56: 81–103.

    Article  CAS  Google Scholar 

  • Gosselin, L.A., and P. Qian. 1997. Juvenile mortality in benthic marine invertebrates. Marine Ecology Progress Series 146: 265–282.

    Article  Google Scholar 

  • Green, M.A., and R.C. Aller. 1998. Seasonal patterns of carbonate diagenesis in nearshore terrigenous muds: relation to spring phytoplankton bloom and temperature. Journal of Marine Research 56: 1097–1123.

    Article  CAS  Google Scholar 

  • Green, M.A., and R.C. Aller. 2001. Early diagenesis of calcium carbonate in Long Island Sound sediments: benthic fluxes of Ca2+ and minor elements during seasonal periods of net dissolution. Journal of Marine Research 59: 769–94.

    Article  CAS  Google Scholar 

  • Green, M.A., J. Gulnick, N. Dowse, and P. Chapman. 2004a. Spatio-temporal patterns of carbon remineralization and bio-irrigation in sediments of Casco Bay Estuary, Gulf of Maine. Limnology and Oceanography 49(2): 396–407.

    Article  CAS  Google Scholar 

  • Green, M.A., M.E. Jones, C.L. Boudreau, R.L. Moore, and B.A. Westman. 2004b. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49(3): 727–734.

    Article  Google Scholar 

  • Green, M.A., G. Waldbusser, S. Reilly, K. Emerson, and S. O’Donnell. 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnology and Oceanography 54(4): 1037–47.

    Article  CAS  Google Scholar 

  • Gutierrez, J.L., C.G. Jones, D.L. Strayer, and O.O. Iribarne. 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90.

    Article  Google Scholar 

  • Holcomb, M., A.L. Cohen, and D.C. McCorkle. 2012. An investigation of the calcification response of the scleractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae and gender. Biogeosciences 9: 29–39.

    Article  CAS  Google Scholar 

  • Hunt, H.L., and R.E. Scheibling. 1997. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Marine Ecology Progress Series 155: 269–301.

    Article  Google Scholar 

  • Hunt, H.L., M.-J. Maltais, D. Fugate, and R.J. Chant. 2007. Spatial and temporal variability in juvenile bivalve dispersal: effects of sediment transport and flow regime. Marine Ecology Progress Series 352: 145–49.

    Article  Google Scholar 

  • Kelly, R.P., M.M. Foley, W.S. Fisher, R.A. Feely, B.S. Halpern, G.G. Waldbusser, and M.R. Caldwell. 2011. Mitigating local causes of ocean acidification with existing laws. Science 332: 1036–1037.

    Article  CAS  Google Scholar 

  • Kudo, M., J. Kameda, K. Saruwatari, N. Ozaki, K. Okano, H. Nagasawa, and T. Kogure. 2010. Microtexture of larval shell of oyster, Crassostrea nippona: a FIB-TEM study. Journal of Structural Biology 169: 1–5.

    Article  Google Scholar 

  • Lundquist, C.J., C.A. Pilditch, and V.J. Cummings. 2004. Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona liliana. Journal of Experimental Marine Biology and Ecology 306: 51–74.

    Article  Google Scholar 

  • Mackin, J., and K.T. Swider. 1989. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. Journal of Marine Research 47: 681–716.

    Article  CAS  Google Scholar 

  • Marinelli, R.L., and S.A. Woodin. 2002. Experimental evidence for linkages between infaunal recruitment, disturbance, and sediment surface chemistry. Limnology and Oceanography 47: 221–29.

    Article  CAS  Google Scholar 

  • Marinelli, R.L., and S.A. Woodin. 2004. Disturbance and recruitment: a test of solute and substrate specificity using Mercenaria mercenaria and Capitella sp. 1. Marine Ecology Progress Series 269: 209–221.

    Article  Google Scholar 

  • McNichol, A.P., C. Lee, and E. Druffel. 1988. Carbon cycling in coastal sediments: a quantitative estimate of the remineralization of organic carbon in the sediments of Buzzards Bay, MA. Geochimica et Cosmochimica Acta 52: 1531–43.

    Article  CAS  Google Scholar 

  • Mehrbach, C., J.E. Culberson, J.E. Hawley, and R.M. Pytkowicz. 1973. Measurements of apparent dissociation constants of carbonic acid in seawater at atmospheric-pressure. Limnology and Oceanography 18: 897–907.

    Article  CAS  Google Scholar 

  • Moller, P. 1986. Physical factors and biological interactions regulating infauna in shallow boreal areas. Marine Ecology Progress Series 30: 33–47.

    Article  Google Scholar 

  • Morse, J. 1983. The kinetics of calcium carbonate dissolution and precipitation. Reviews in Mineralogy 11: 227–264.

    CAS  Google Scholar 

  • Norkko, A., V.J. Cummings, S.F. Thrush, J.E. Hewitt, and T. Hume. 2001. Local dispersal of juvenile bivalves: implications for sandflat ecology. Marine Ecology Progress Series 212: 131–144.

    Article  Google Scholar 

  • Pawlik, J.R. 1992. Chemical ecology of the settlement of benthic marine-invertebrates. Oceanography and Marine Biology 30: 273–335.

    Google Scholar 

  • Powell, E.N., and J.M. Klinck. 2007. Is oyster shell a sustainable estuarine resource? Journal of Shellfish Research 26: 181–194.

    Article  Google Scholar 

  • Rasmussen, H., and B.B. Jørgensen. 1992. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Marine Ecology Progress Series 81: 289.

    Article  CAS  Google Scholar 

  • Richards, M.G., M. Huxman, and A. Bryant. 1999. Predation: a causal mechanism for variability in intertidal bivalve populations. Journal of Experimental Marine Biology and Ecology 241: 159–77.

    Article  Google Scholar 

  • Rodriguez, S.R., F.P. Ojeda, and N.C. Inestrosa. 1993. Settlement of benthic marine-invertebrates. Marine Ecology Progress Series 97: 193–207.

    Article  Google Scholar 

  • Roegner, C., C. Andre, M. Lindegarth, J.E. Eckman, and J. Grant. 1995. Transport of recently settled soft-shell clams (Mya arenaria L.) in laboratory flume flow. Journal of Experimental Marine Biology and Ecology 187: 13–26.

    Article  Google Scholar 

  • Rude, P.D., and R.C. Aller. 1991. Fluorine mobility during early diagenesis of carbonate sediment: an indicator of mineral transformations. Geochimica et Cosmochimica Acta 55: 2491–2509.

    Article  CAS  Google Scholar 

  • Schöne, B.R., and O. Giere. 2005. Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk Bathymodiolus brevior from the North Fiji Basic, Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 52: 1896–1910.

    Article  Google Scholar 

  • Sokal, R.R., and F.J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed, 887. New York: W. H. Freeman and Co.

    Google Scholar 

  • Talmage, S., and C.J. Gobler. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107: 17246–17251.

    Article  CAS  Google Scholar 

  • Valanko, S., A. Norkko, and J. Norkko. 2010. Strategies of post-larval dispersal in non-tidal soft-sediment communities. Journal of Experimental Marine Biology and Ecology 384: 51–60.

    Article  Google Scholar 

  • Waldbusser, G.G., H. Bergscheider, and M.A. Green. 2010. Size-dependent effect of pH on calcification in post-larval hard clam Mercenaria mercenaria. Marine Ecology Progress Series 417: 171–182.

    Article  Google Scholar 

  • Walter, L.M., and E.A. Burton. 1990. Dissolution of recent platform carbonate sediments in marine pore fluids. American Journal of Science 290: 601–43.

    Article  Google Scholar 

  • Weiss, I., N. Tuross, L. Addadi, and S. Weiner. 2002. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. The Journal of Experimental Zoology 293: 478–491.

    Article  CAS  Google Scholar 

  • Woodin, S.A. 1998. Process-specific cues for recruitment in sedimentary environments: geochemical signals? Journal of Marine Research 56: 535–558.

    Article  CAS  Google Scholar 

  • Woodin, S.A., S.M. Lindsay, and D.S. Wethey. 1995. Process-specific recruitment cues in marine sedimentary systems. Biology Bulletin 189: 49–58.

    Article  Google Scholar 

  • Zwarts, L., and J. Wanink. 1989. Siphon size and burying depth in deposit—and suspension-feeding benthic bivalves. Marine Biology 100: 227–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, M.A., Waldbusser, G.G., Hubazc, L. et al. Carbonate Mineral Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds. Estuaries and Coasts 36, 18–27 (2013). https://doi.org/10.1007/s12237-012-9549-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9549-0

Keywords

Navigation