Skip to main content
Log in

Increased Variability of Microbial Communities in Restored Salt Marshes nearly 30 Years After Tidal Flow Restoration

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We analyzed microbial diversity and community composition from four salt marsh sites that were impounded for 40–50 years and subsequently restored and four unimpounded sites in southeastern Connecticut over one growing season. Community composition and diversity were assessed by terminal restriction fragment length polymorphism (TRFLP) and sequence analysis of 16S ribosomal RNA (rRNA) genes. Our results indicated diverse communities, with sequences representing 14 different bacterial divisions. Proteobacteria, Bacteroidetes, and Planctomycetes dominated clone libraries from both restored and unimpounded sites. Multivariate analysis of the TRFLP data suggest significant site, sample date, and restoration status effects, but the exact causes of these effects are not clear. Composition of clone libraries and abundance of bacterial 16S rRNA genes were not significantly different between restored sites and unimpounded sites, but restored sites showed greater temporal and spatial variability of bacterial communities based on TRFLP profiles compared with unimpounded sites, and variability was greatest at sites more recently restored. In summary, our study suggests there may be long-lasting effects on stability of bacterial communities in restored salt marshes and raises questions about the resilience and ultimate recovery of the communities after chronic disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, E.A., P.E. Fell, M.A. Peck, J.A. Gieg, C.R. Guthke, and M.D. Newkirk. 1994. Gut contents of common mummichogs, Fundulus heteroclitus L., in a restored impounded marsh and in natural reference marshes. Estuaries 17: 462–471.

    Article  Google Scholar 

  • Allison, S.D., and J.B.H. Martiny. 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America 105: 11512–11519.

    Article  CAS  Google Scholar 

  • Ayala-Del-Rio, H.L., S.J. Callister, C.S. Criddle, and J.M. Tiedje. 2004. Correspondence between community structure and function during succession in phenol- and phenol-plus-trichloroethene-fed sequencing batch reactors. Applied and Environmental Microbiology 70: 4950–4960.

    Article  CAS  Google Scholar 

  • Begon, M., J.L. Harper, and C.R. Townsend. 1990. Ecology: Individuals, populations and communities. Cambridge, MA: Blackwell.

    Google Scholar 

  • Benoit, L.K., and R.S. Askins. 1999. Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19: 194–208.

    Article  Google Scholar 

  • Bernhard, A.E., D. Colbert, J. McManus, and K.G. Field. 2005a. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiology Ecology 52: 115–128.

    Article  CAS  Google Scholar 

  • Bernhard, A.E., T. Donn, A.E. Giblin, and D.A. Stahl. 2005b. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environmental Management 7: 1289–1297.

    CAS  Google Scholar 

  • Bernhard, A.E., J. Tucker, A.E. Giblin, and D.A. Stahl. 2007. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environmental Microbiology 9: 1439–1447.

    Article  CAS  Google Scholar 

  • Bordalo, A.A. 1993. Effects of salinity on bacterioplankton: Field and microcosm experiments. Journal of Applied Bacteriology 75: 393–398.

    Article  Google Scholar 

  • Bouvier, T.C., and P.A. del Giorgio. 2002. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnology and Oceanography 47: 453–470.

    Article  CAS  Google Scholar 

  • Bowen, J.L., B.C. Crump, L.A. Deegan, and J.E. Hobbie. 2009. Salt marsh sediment bacteria: Their distribution and response to external nutrient inputs. ISME Journal 3: 924–934.

    Article  CAS  Google Scholar 

  • Brawley, A.H., R.S. Warren, and R.S. Askins. 1998. Bird use of restoration and reference marshes within the Barn Island Wildlife Management Area, Stonington, Connecticut, USA. Environmental Management 22: 625–633.

    Article  Google Scholar 

  • Collins, B., G. Wein, and T. Philippi. 2001. Effects of disturbance intensity and frequency on early old-field succession. Journal of Vegetation Science 12: 721–728.

    Article  Google Scholar 

  • Crain, G.M., K.B. Gedan, and M. Dionne. 2009. Tidal restrictions and mosquito ditching in New England marshes. In Human impacts on salt marshes: A global perspective, ed. B.R. Silliman, E.D. Grosholz, and M.D. Bertness. Berkeley, CA: University of California Press.

    Google Scholar 

  • Crump, B.C., C.S. Hopkinson, M.L. Sogin, and J.E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: Combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70: 1494–1505.

    Article  CAS  Google Scholar 

  • Denslow, J.S. 1985. Disturbance-mediated coexistence of species. In The ecology of natural disturbance and patch dynamics, ed. S.T.A. Pickett and P.S. White. Orlando: Academic.

    Google Scholar 

  • Dunbar, J., L.O. Ticknor, and C.R. Kuske. 2000. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology 66: 2943–2950.

    Article  CAS  Google Scholar 

  • Fernandez, A.S., S.A. Hashsham, S.L. Dollhopf, L. Raskin, O. Glagoleva, F.B. Dazzo, R.F. Hickey, C.S. Criddle, and J.M. Tiedje. 2000. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology 66: 4058–4067.

    Article  CAS  Google Scholar 

  • Finlay, B.J., S.C. Maberly, and J.I. Cooper. 1997. Microbial diversity and ecosystem function. Oikos 80: 209–213.

    Article  Google Scholar 

  • Fraterrigo, J.M., and J.A. Rusak. 2008. Disturbance-driven changes in the variability of ecological patterns and processes. Ecology Letters 11: 756–770.

    Article  Google Scholar 

  • Fuerst, J. 1995. The Planctomycetes: Emerging models for microbial ecology, evolution and cell biology. Microbiology 141: 1493–1506.

    Article  CAS  Google Scholar 

  • Glockner, F.O., B.M. Fuchs, and R. Amann. 1999. Bacterioplankton compositions of lakes and oceans: A first comparison based on fluorescence in situ hybridization. Applied and Environmental Microbiology 65: 3721–3726.

    CAS  Google Scholar 

  • Griffiths, B.S., H.L. Kuan, K. Ritz, L.A. Glover, A.E. McCaig, and C. Fenwick. 2004. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microbial Ecology 47: 104–113.

    Article  CAS  Google Scholar 

  • Grman, E., J.A. Lau, D.R. Schoolmaster, and K.L. Gross. 2010. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecology Letters 13: 1400–1410.

    Article  Google Scholar 

  • Hardwick, E.O., W. Ye, M.A. Moran, and R.E. Hodson. 2003. Temporal dynamics of three culturable γ-Proteobacteria taxa in salt marsh sediments. Aquatic Ecology 37: 55–64.

    Article  Google Scholar 

  • Hashsham, S.A., A.S. Fernandez, S.L. Dollhopf, F.B. Dazzo, R.F. Hickey, J.M. Tiedje, and C.S. Criddle. 2000. Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology 66: 4050–4057.

    Article  CAS  Google Scholar 

  • Herbert, D.A., and J.W. Fourqurean. 2008. Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow. Ecosystems 11: 688–700.

    Article  CAS  Google Scholar 

  • Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.

    Article  Google Scholar 

  • Könneke, M., A.E. Bernhard, J.R. de la Torre, C.B. Walker, J.B. Waterbury, and D.A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546.

    Article  Google Scholar 

  • Kruskal, J.B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29: 115–129.

    Article  Google Scholar 

  • Lane, D. J. 1991. 16S/23S rRNA sequencing. In Nuleic acid techniques in bacterial systematic, eds. E. Stackebrandt and M. Goodfellow. New York: Wiley

  • Lane, D.J., B. Pace, G.J. Olsen, D.A. Stahl, M.L. Sogin, and N.R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceeding of the National Academy of Sciences of the United States of America 82: 6955–6959.

    Article  CAS  Google Scholar 

  • LaRiviere, D., R.L. Autenrieth, and J.S. Bonner. 2004. Redox dynamics of a tidally-influenced wetland on the San Jacinto River. Estuaries 27: 253–264.

    Article  CAS  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, A. Yadhukumar, T. Buchner, S. Lai, G. Steppi, W. Jobb, I. Förster, S. Brettske, A.W. Gerber, O. Ginhart, S. Gross, S. Grumann, R. Hermann, A. Jost, T. König, R. Liss, M. Lüßmann, B. May, B. Nonhoff, R. Reichel, A. Strehlow, N. Stamatakis, A. Stuckmann, M. Vilbig, T. Lenke, A.B. Ludwig, and K.-H. Schleifer. 2004. ARB: A software environment for sequence data. Nucleic Acids Research 32: 1363–1371.

    Article  CAS  Google Scholar 

  • Maoz, A., R. Mayr, and S. Scherer. 2003. Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Applied and Environmental Microbiology 69: 4012–4018.

    Article  CAS  Google Scholar 

  • McCune, B., and G. Cottam. 1985. The successional status of a southern Wisconsin oak woods. Ecology 66: 1270–1278.

    Article  Google Scholar 

  • McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. Gleneden Beach, OR: MjM Software Design.

    Google Scholar 

  • McCune, B., and M.J. Mefford. 1999. PC-ORD. Gleneden Beach, OR, MjM Software: Multivariate analysis of ecological data.

    Google Scholar 

  • Miller, W.R., and F.E. Egler. 1950. Vegetation of the Wequetequock–Pawcatuck tidal marshes, Connecticut. Ecological Monographs 20: 143–172.

    Article  Google Scholar 

  • Moin, N.S., K.A. Nelson, A. Bush, and A.E. Bernhard. 2009. Distribution and diversity of archaeal and bacterial ammonia-oxidizers in salt marsh sediment. Applied and Environmental Microbiology 75: 7461–7468.

    Article  CAS  Google Scholar 

  • Naeem, S., and S. Li. 1997. Biodiversity enhances ecosystem reliability. Nature 390: 507–509.

    Article  CAS  Google Scholar 

  • Nielsen, J.L., A. Schramm, A.E. Bernhard, G.J. Van Den Engh, and D.A. Stahl. 2004. Flow cytometry-assisted cloning of specific sequence motifs from complex 16S rRNA gene libraries. Applied and Environmental Microbiology 70: 7550–7554.

    Article  CAS  Google Scholar 

  • Odum, E.P. 1985. Trends expected in stressed ecosystems. BioScience 35: 419–422.

    Article  Google Scholar 

  • Oliveira, V., A.L. Santos, F. Coelho, N.C.M. Gomes, H. Silva, A. Almeida, and A. Cunha. 2010. Effects of monospecific banks of salt marsh vegetation on sediment bacterial communities. Microbial Ecology 60: 167–179.

    Article  Google Scholar 

  • Onaindia, M., I. Albizu, and I. Amezaga. 2001. Effect of time on the natural regeneration of salt marsh. Applied Vegetation Science 4: 247–256.

    Article  Google Scholar 

  • Peck, M.A., P.E. Fell, E.A. Allen, J.A. Gieg, C.R. Guthke, and M.D. Newkirk. 1994. Evaluation of tidal marsh restoration: Comparison of selected macroinvertebrate populations on a restored impounded valley marsh and an unimpounded valley marsh within the same system in Connecticut, USA. Environmental Management 18: 283–293.

    Article  Google Scholar 

  • Portnoy, J.W., and A.E. Giblin. 1997. Biogeochemical effects of seawater restoration to diked salt marshes. Ecological Applications 7: 1054–1063.

    Article  Google Scholar 

  • Ravit, B., J.G. Ehenfeld, and M.M. Haggblom. 2006. Effects of vegetation on root-associated microbial communities: A comparison of disturbed versus undisturbed estuarine sediments. Soil Biology and Biochemistry 38: 2359–2371.

    Article  CAS  Google Scholar 

  • Ravit, B., J.G. Ehrenfeld, M.M. Haggblom, and M. Bartels. 2007. The effects of drainage and nitrogen enrichment on Phragmites australis, Spartina alterniflora, and their root-associated microbial communities. Wetlands 27: 915–927.

    Article  Google Scholar 

  • Revilla, M., A. Iriarte, I. Madariaga, and E. Orive. 2000. Bacterial and phytoplankton dynamics along a trophic gradient in a shallow temperate estuary. Estuarine, Coastal and Shelf Science 50: 297–313.

    Article  Google Scholar 

  • Roman, C.T., K.B. Raposa, S.C. Adamowicz, M.-J. James-Pirri, and J.G. Catena. 2002. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh. Restoration Ecology 10: 450–460.

    Article  Google Scholar 

  • Santos, L., Ç. Cunha, H. Silva, I. Caçador, J.M. Dias, and A. Almeida. 2007. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary). FEMS Microbiology Ecology 60: 429–441.

    Article  CAS  Google Scholar 

  • Schloss, P.D. 2008. Evaluating different approaches that test whether microbial communities have the same structure. ISME Journal 2: 265–275.

    Article  Google Scholar 

  • Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537–7541.

    Article  CAS  Google Scholar 

  • Singleton, D.R., M.A. Furlong, S.L. Rathbun, and W.B. Whitman. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Applied and Environmental Microbiology 67: 4374–4376.

    Article  CAS  Google Scholar 

  • Sinicrope, T.L., P.G. Hine, R.S. Warren, and W.A. Niering. 1990. Restoration of an impounded salt marsh in New England. Estuaries 13: 25–30.

    Article  Google Scholar 

  • Swamy, V., P.E. Fell, M. Body, M.B. Keaney, M.K. Nyaku, E.C. McIlvain, and A.L. Keen. 2002. Macroinvertebrate and fish populations in a restored impounded salt marsh 21 years after the reestablishment of tidal flooding. Environmental Management 29: 516–530.

    Article  Google Scholar 

  • Urbach, E., K.L. Vergin, L. Young, A. Morse, G.L. Larson, and S.J. Giovannoni. 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography 46: 557–572.

    Article  CAS  Google Scholar 

  • Valentine, D.L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review. Antonie Van Leeuwenhoek 81: 271–282.

    Article  CAS  Google Scholar 

  • Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73(16): 5261–5267.

    Article  CAS  Google Scholar 

  • Warren, R.S., and W.A. Neiring. 1993. Vegetation changes on a northeast tidal marsh: Interaction of sea-level rise and accretion. Ecology 74: 96–103.

    Article  Google Scholar 

  • Warren, R.S., P.E. Fell, J.L. Grimsby, E.L. Buck, G.C. Rilling, and R.A. Fertik. 2001. Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24: 90–107.

    Article  Google Scholar 

  • Warren, R.S., P.E. Fell, R. Rozsa, A.H. Brawley, A.C. Orsted, E.T. Olson, V. Swamy, and W.A. Niering. 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology 10: 497–513.

    Article  Google Scholar 

  • Zedler, J.B., and S. Kercher. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30: 39–74.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation award DEB-0814586 (AEB) and by the Long Island Sound Fund administerd by the Connecticut Department of Environmental Protection, through the sale of Long Island Sound license plates and contributions. Additional support was provided by the George and Carol Milne Endowment at Connecticut College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne E. Bernhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhard, A.E., Marshall, D. & Yiannos, L. Increased Variability of Microbial Communities in Restored Salt Marshes nearly 30 Years After Tidal Flow Restoration. Estuaries and Coasts 35, 1049–1059 (2012). https://doi.org/10.1007/s12237-012-9502-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9502-2

Keywords

Navigation