Estuaries and Coasts

, Volume 34, Issue 6, pp 1293–1309 | Cite as

Long-Term Trends in Chesapeake Bay Seasonal Hypoxia, Stratification, and Nutrient Loading

  • Rebecca R. Murphy
  • W. Michael Kemp
  • William P. Ball


A previously observed shift in the relationship between Chesapeake Bay hypoxia and nitrogen loading has pressing implications on the efficacy of nutrient management. Detailed temporal analyses of long-term hypoxia, nitrogen loads, and stratification were conducted to reveal different within-summer trends and understand more clearly the relative role of physical conditions. Evaluation of a 60-year record of hypoxic volumes demonstrated significant increases in early summer hypoxia, but a slight decrease in late summer hypoxia. The early summer hypoxia trend is related to an increase in Bay stratification strength during June from 1985 to 2009, while the late summer hypoxia trend matches the recently decreasing nitrogen loads. Additional results show how the duration of summertime hypoxia is significantly related to nitrogen loading, and how large-scale climatic forces may be responsible for the early summer increases. Thus, despite intra-summer differences in primary controls on hypoxia, continuing nutrient reduction remains critically important for achieving improvements in Bay water quality.


Hypoxia Stratification Nutrients Chesapeake Bay Kriging Long-term trends 



This study was supported by funding from the National Science Foundation under Grant no. 0618986 and the US Department of Commerce, NOAA Grant no. NAO7NOS4780191. We would like to thank EPA Chesapeake Bay Program for access to the monitoring data; Randal Burns and Eric Perlman for CBEO testbed development; Frank Curriero for the aid with kriging methods; Dominic Di Toro, Jeremy Testa, Damian Brady, and Malcolm Scully for useful discussions; and two anonymous reviewers for helpful comments.

Supplementary material

12237_2011_9413_MOESM1_ESM.doc (12.8 mb)
(DOC 12.7 mb)


  1. Bahner, L. 2006. User guide for the Chesapeake Bay and tidal tributary interpolator. NOAA Chesapeake Bay Office, Annapolis, MD.
  2. Barbosa, S.M., and M.E. Silva. 2009. Low-frequency sea-level change in Chesapeake Bay: Changing seasonality and long-term trends. Estuarine, Coastal and Shelf Science 83: 30–38. doi: 10.1016/j.ecss.2009.03.014.CrossRefGoogle Scholar
  3. Boesch, D.F., V.J. Coles, D.G. Kimmel, and W.D. Miller. 2007. Coastal dead zones & global climate change: Ramifications of climate change for Chesapeake Bay hypoxia. Pew Center on Global Climate Change.
  4. Boicourt, W.C. 1992. Influences of circulation processes on dissolved oxygen in the Chesapeake Bay. In Oxygen dynamics in the Chesapeake Bay: A synthesis of recent research, ed. D.E. Smith et al., 7–59. College Park: Maryland Sea Grant Publication.Google Scholar
  5. Box, G.E.P., and D.R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B: Methodological 26: 211–252.Google Scholar
  6. Boynton, W.R., and W.M. Kemp. 2000. Influence of river flow and nutrient loads on selected ecosystem processes. In Estuarine science: A synthetic approach to research and practice, ed. J.E. Hobbie, 269–298. Washington: Island.Google Scholar
  7. Breitburg, D.L. 1992. Episodic hypoxia in Chesapeake Bay: Interacting effects of recruitment, behavior, and physical disturbance. Ecological Monographs 62: 525–546.CrossRefGoogle Scholar
  8. Breitburg, D.L. 2002. Effects of hypoxia and the balance between hypoxia and enrichment, on coastal fishers and fisheries. Estuaries 25: 767–781. doi: 10.1007/BF02804904.CrossRefGoogle Scholar
  9. CBEO Project Team (Ball, W., D. Brady, M. Brooks, R. Burns, B. Cuker, D. DiToro, T. Gross, W.M. Kemp, L. Murray, R. Murphy, E. Perlman, M. Piasecki, J. Testa, I. Zaslavsky). 2008. Prototype system for multidisciplinary shared cyberinfrastructure: Chesapeake Bay Environmental Observatory. Journal of Hydrologic Engineering 13: 960–970. doi: 10.1061/(ASCE)1084-0699(2008)13:10(960).CrossRefGoogle Scholar
  10. Chesapeake Bay Program. 1993. Guide to using Chesapeake Bay Program water quality monitoring data. CBP/TRS 78/92, Annapolis, MD.Google Scholar
  11. Chesapeake Bay Program. 2008. Chesapeake Bay historical data sets. Accessed 8 Oct 2008.
  12. Chesapeake Bay Program. 2010. CBP Water Quality Database (1984–present). Accessed 20 Jul 2010.
  13. Codiga, D.L., H.E. Stoffel, C.F. Deacutis, S. Kiernan, and C.A. Oviatt. 2009. Narragansett Bay hypoxic event characteristics based on fixed-site monitoring network time series: Intermittency, geographic distribution, spatial synchronicity, and interannual variability. Estuaries and Coasts 32: 621–641. doi: 10.1007/s12237-009-9165-9.CrossRefGoogle Scholar
  14. Coma, R., M. Ribes, E. Serrano, E. Jimenez, J. Salat, and J. Pascual. 2008. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 106: 6176–6181. doi: 10.1073/pnas.0805801106.CrossRefGoogle Scholar
  15. Conley, D.J., J. Carstensen, G. Ærtebjerg, P.B. Christensen, T. Dalsgaard, J.L.S. Hansen, and A.B. Josefson. 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecological Applications 17(5 Supplement): S165–S184.CrossRefGoogle Scholar
  16. Conley, D.J., J. Carstensen, R. Vaquer-Sunyer, and C.M. Duarte. 2009. Ecosystem thresholds with hypoxia. Hydrobiologia 629: 21–29. doi: 10.1007/978-90-481-3385-7_3.CrossRefGoogle Scholar
  17. Cressie, N.A.C. 1993. Statistics for Spatial Data, Revised ed. New York: Wiley.Google Scholar
  18. Cronin, W.B., and D.W. Pritchard. 1975. Additional statistics on the dimensions of Chesapeake Bay and its tributaries: Cross-section widths and segment volumes per meter depth. Reference 75–3. Special Report 42. Baltimore: Chesapeake Bay Institute, The Johns Hopkins University.Google Scholar
  19. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929. doi: 10.1126/science.1156401.CrossRefGoogle Scholar
  20. Diggle, P.J., and P.J. Ribeiro. 2007. Modeled-based geostatistics. New York: Springer.Google Scholar
  21. Edwards, M., and A.J. Richardson. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884. doi: 10.1038/nature02808.CrossRefGoogle Scholar
  22. Fisher, T.R., A.B. Gustafson, K. Sellner, R. Lacouture, L.W. Haas, R.L. Wetzel, R. Magnien, D. Everitt, B. Michaels, and R. Karrh. 1999. Spatial and temporal variation of resource limitation in Chesapeake Bay. Marine Biology 133: 763–778. doi: 10.1007/s002270050518.CrossRefGoogle Scholar
  23. Goodrich, D.M., W.C. Boicourt, P. Hamilton, and D.W. Pritchard. 1987. Wind-induced destratification in Chesapeake Bay. Journal of Physical Oceanography 17: 2232–2240.CrossRefGoogle Scholar
  24. Guo, X., and A. Valle-Levinson. 2008. Wind effects on the lateral structure of density-driven circulation in Chesapeake Bay. Continental Shelf Research 28: 2450–2471. doi: 10.1016/j.csr.2008.06.008.CrossRefGoogle Scholar
  25. Hagy, J.D., W.R. Boynton, C.W. Keefe, and K.V. Wood. 2004. Hypoxia in the Chesapeake Bay, 1950–2001: Long-term changes in relation to nutrient loading and river flows. Estuaries 27: 634–658. doi: 10.1007/BF02907650.CrossRefGoogle Scholar
  26. Harding, L.W. 1994. Long-term trends in the distribution of phytoplankton in Chesapeake Bay: Roles of light, nutrients and streamflow. Marine Ecology Progress Series 104: 267–291.CrossRefGoogle Scholar
  27. Hilton, T.W., R.G. Najjar, L. Zhong, and M. Li. 2008. Is there a signal of sea-level rise in Chesapeake Bay salinity? Journal of Geophysical Research 113: 1–12. doi: 10.1029/2007JC004247.CrossRefGoogle Scholar
  28. Hodgkins, G.A., and R.W. Dudley. 2006. Changes in the timing of winter–spring streamflows in eastern North America, 1913–2002. Geophysical Research Letters 33: L06402. doi: 10.1029/2005GL025593.CrossRefGoogle Scholar
  29. Jolliffe, I.T. 2002. Principal component analysis, 2nd ed. New York: Springer.Google Scholar
  30. Kemp, W.M., and W.R. Boynton. 1984. Spatial and temporal coupling of nutrient inputs to estuarine primary production: The role of particulate transport and decomposition. Bulletin of Marine Science 35: 522–535.Google Scholar
  31. Kemp, W.M., P.A. Sampou, J. Garber, J. Tuttle, and W.R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series 85: 137–152.CrossRefGoogle Scholar
  32. Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.CrossRefGoogle Scholar
  33. Kemp, W.M., J.M. Testa, D.J. Conley, D. Gilbert, and J.D. Hagy. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6: 2985–3008.CrossRefGoogle Scholar
  34. Knauss, J.A. 1997. Introduction to physical oceanography, 2nd ed. Upper Saddle River: Prentice Hall.Google Scholar
  35. Kromkamp, J.C., and T.V. Engeland. 2010. Changes in phytoplankton biomass in the Western Scheldt estuary during the period 1978–2006. Estuaries and Coasts 33: 270–285. doi: 10.1007/s12237-009-9215-3.CrossRefGoogle Scholar
  36. Langland, M.J., D.L. Moyer, and J. Blomquist. 2007. Changes in streamflow, concentrations, and loads in selected nontidal basins in the Chesapeake Bay watershed, 1985–2006. Open File Report 2007-1372. U.S. Geological Survey.
  37. Lee, Y.J., and K.M.M. Lwiza. 2008. Factors driving bottom salinity variability in the Chesapeake Bay. Continental Shelf Research 28: 1352–1362. doi: 10.1016/j.csr.2008.03.016.CrossRefGoogle Scholar
  38. Lerczak, J.A., and W.R. Geyer. 2004. Modeling the lateral circulation in straight, stratified estuaries. Journal of Physical Oceanography 34: 1410–1428.CrossRefGoogle Scholar
  39. Li, M., L. Zhong, W.C. Boicourt, S. Zhang, and D.-L. Zhang. 2007. Hurricane-induced destratification and restratification in a partially-mixed estuary. Journal of Marine Research 65: 169–192.Google Scholar
  40. Lomas, M.W., P.M. Glibert, F. Shiah, and E.M. Smith. 2002. Microbial processes and temperature in Chesapeake Bay: Current relationships and potential impacts of regional warming. Global Change Biology 8: 51–70.CrossRefGoogle Scholar
  41. Ludsin, S.A., X. Zhang, S.B. Brandt, M.R. Roman, W.C. Boicourt, D.M. Mason, and M. Costantini. 2009. Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: Implications for food web interactions and fish recruitment. Journal of Experimental Marine Biology and Ecology 381: S121–S131. doi: 10.1016/j.jembe.2009.07.016.CrossRefGoogle Scholar
  42. Malone, T.C. 1992. Effects of water column processes on dissolved oxygen, nutrients, phytoplankton and zooplankton. In Oxygen dynamics in the Chesapeake Bay: A synthesis of recent research, ed. D.E. Smith et al., 61–112. College Park: Maryland Sea Grant Publication.Google Scholar
  43. Malone, T.C., L.H. Crocker, S.E. Pike, and B.W. Wendler. 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Marine Ecology Progress Series 48: 235–249.CrossRefGoogle Scholar
  44. Miles, J.W. 1961. On the stability of heterogeneous shear flows. Journal of Fluid Mechanics 10: 496–508.CrossRefGoogle Scholar
  45. Murphy, R.R., F.C. Curriero, and W.P. Ball. 2010. Comparison of spatial interpolation methods for water quality evaluation in the Chesapeake Bay. Journal of Environmental Engineering 136: 160–171. doi: 10.1061/(ASCE)EE.1943-7870.0000121.CrossRefGoogle Scholar
  46. Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, M.R. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Woodm. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86: 1–20. doi: 10.1016/j.ecss.2009.09.026.CrossRefGoogle Scholar
  47. National Climatic Data Center. 2009. Global summary of the day, Patuxent Naval Air Station. Accessed 12 Jul 2010.
  48. National Oceanic and Atmospheric Administration. 2010. Historic tide data. Accessed 17 Jul 2010.
  49. Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, and significance. Science 223: 22–27.CrossRefGoogle Scholar
  50. Paerl, H.W., J.L. Pinckney, J.M. Fear, and B.L. Peierls. 1998. Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series 166: 17–25.CrossRefGoogle Scholar
  51. Preston, B.L. 2004. Observed winter warming of the Chesapeake Bay estuary (1949–2002): Implications for ecosystem management. Environmental Management 34: 125–139. doi: 10.1007/s00267-004-0159-x.CrossRefGoogle Scholar
  52. R Development Core Team. 2008. The R project for statistical computing. Accessed 24 Aug 2008.
  53. Rabalais, N.N., R.E. Turner, R.J. Diaz, and D. Justic. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science 66: 1528–1537. doi: 10.1093/icesjms/fsp047.CrossRefGoogle Scholar
  54. Regonda, S.K., B. Rajagopalan, M. Clark, and J. Pitlick. 2005. Seasonal cycle shifts in hydroclimatology over the western United States. Journal of Climate 18: 372–384.CrossRefGoogle Scholar
  55. Ribeiro, P.J., and P.J. Diggle. 2008. geoR: A package for geostatistical analysis using the R software. Accessed 18 Aug 2008.
  56. Ripley, B.D., and M. Lapsley. 2008. RODBC: ODBC database access. Accessed 22 May 2008.
  57. Sampou, P., and W.M. Kemp. 1994. Factors regulating plankton community respiration in Chesapeake Bay. Marine Ecology Progress Series 110: 249–258.CrossRefGoogle Scholar
  58. Scully, M.E. 2010a. The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay. Journal of Physical Oceanography 40: 1435–1440. doi: 10.1175/2010JPO4321.1.CrossRefGoogle Scholar
  59. Scully, M.E. 2010b. Wind Modulation of Dissolved Oxygen in Chesapeake Bay. Estuaries and Coasts 33: 1164–1175. doi: 10.1007/s12237-010-9319-9.CrossRefGoogle Scholar
  60. Seitz, R.D., D.M. Dauer, R.J. Llansó, and C. Long. 2009. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology 381: S4–S12. doi: 10.1016/j.jembe.2009.07.004.CrossRefGoogle Scholar
  61. Turner, R.E., N.N. Rabalais, and D. Justic. 2008. Gulf of Mexico hypoxia: Alternate states and a legacy. Environmental Science & Technology 42: 2323–2327.CrossRefGoogle Scholar
  62. Ukrainskii, V.V., and Y.I. Popov. 2009. Climatic and hydrophysical conditions of the development of hypoxia in waters of the northwest shelf of the Black Sea. Physical Oceanography 19: 140–150. doi: 10.1007/s11110-009-9046-6.CrossRefGoogle Scholar
  63. U.S. Geological Survey. 2010a. Chesapeake Bay river input monitoring program. Accessed 17 May 2010.
  64. U.S. Geological Survey. 2010b. Surface-water data for the nation. Accessed 1 Dec 2010.
  65. Zervas, C. 2009. Sea level variations of the United States 1854–2006. Technical Report NOS CO-OPS 053. National Oceanic and Atmospheric Administration, National Ocean Service, Center for Operational Oceanographic Products and Services, Silver Spring, Maryland.

Copyright information

© Coastal and Estuarine Research Federation 2011

Authors and Affiliations

  • Rebecca R. Murphy
    • 1
  • W. Michael Kemp
    • 2
  • William P. Ball
    • 1
  1. 1.Department of Geography and Environmental EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Horn Point Laboratory, Center for Environmental ScienceUniversity of MarylandCambridgeUSA

Personalised recommendations