Skip to main content
Log in

Environmental and Physical Controls on the Formation and Transport of Blooms of the Dinoflagellate Cochlodinium polykrikoides Margalef in the Lower Chesapeake Bay and Its Tributaries

Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Massive blooms of the harmful alga Cochlodinium polykrikoides Margalef occurred in the lower Chesapeake Bay and its tributaries during the summers of 2007 and 2008. The Lafayette and Elizabeth Rivers appeared to act as initiation grounds for these blooms during both years. However, in 2008 there were also localized sites of initiation and growth of populations within the mesohaline portion of the James River. Bloom initiation appeared to be correlated with intense, highly localized rainfall events during neap tides. Subsequent spring tides increased tidal flushing and transport of C. polykrikoides from the Lafayette and Elizabeth Rivers into the lower James River where it was transported upriver by local estuarine circulation. Blooms dissipated in response to increased wind-driven mixing associated with frontal systems moving through the region. A combination of physical factors including, seasonal rainfall patterns, increased stratification, nutrient loading, spring-neap tidal modulation, and complex estuarine mixing and circulation allowed C. polykrikoides to spread and form massive blooms over large portions of the tidal James River and the lower Chesapeake Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Anderson, D.M., P.M. Glibert, and J.M. Burkholder. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704–726.

    Article  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Flewelling, L.J., J.P. Naar, J.P. Abbott, D.G. Baden, N.B. Barros, G.D. Bossart, M.-Y.D. Bottein, D.G. Hammond, E.M. Haubold, C.A. Heil, M.S. Henry, H.M. Jacocks, T.A. Leighfield, R.H. Pierce, T.D. Pitchford, S.A. Rommel, P.S. Scott, K.A. Steidinger, E.W. Truby, F.M. Van Dolah, and J.H. Landsberg. 2005. Brevetoxicosis red tides and marine mammal mortalities. Nature 435: 755–756.

    Article  CAS  Google Scholar 

  • Glibert, P.M., V. Kelly, J. Alexander, L.A. Codispoti, W.C. Boicourt, T.M. Trice, and B. Michael. 2008. In situ nutrient monitoring: a tool for capturing nutrient variability and the antecedent conditions that support algal blooms. Harmful Algae 8: 175–181.

    Article  CAS  Google Scholar 

  • Gobler, C.J., D.L. Berry, R.O. Anderson, A. Burson, F. Koch, B.S. Rodgers, L.K. Moore, J.A. Goleski, B. Allam, P. Bowser, Y. Tang, and R. Nuzzi. 2008. Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 7: 293–307.

    Article  CAS  Google Scholar 

  • Hallegraeff, G.M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.

    Article  Google Scholar 

  • Hamrick, J.M. 1992. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects. Special Report in Applied Marine Science and Ocean Engineering. No. 317, 63. College of William and Mary, VIMS.

  • Hamrick, J.M., and T.S. Wu. 1997. Computational design and optimization of the EFDC/HEM3D surface water hydrodynamic and eutrophication models. In Next Generation environmental models and computational methods, eds. G. Delich and M.F. Wheeler, 143–1611. Society for Industrial and Applied Mathematics.

  • Heil, C.A., P.M. Glibert, M.A. Al-Sarawi, M. Faraj, M. Behbehani, and M. Husain. 2001. First record of a fish-killing Gymnodinium sp. bloom in Kuwait Bay, Arabian Sea: chronology and potential causes. Marine Ecology Progress Series 214: 15–23.

    Article  CAS  Google Scholar 

  • Heil, C.A., P.M. Glibert, and C. Fan. 2005. Prorocentrum minimum (Pavillard) Schiller: A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4: 449–470.

    Article  CAS  Google Scholar 

  • Jeong, H.J., Y.D. Yoo, J.S. Kim, T.H. Kim, J.H. Kim, N.S. Kang, and W. Yih. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): Prey species, the effects of prey concentration, and grazing impact. The Journal of Eukaryotic Microbiology 51: 563–569.

    Article  Google Scholar 

  • Jiang, X., Y. Tang, D.J. Lonsdale, and C.J. Gobler. 2009. Deleterious consequences of a red tide dinoflagellate Cochlodinium polykrikoides for the calanoid copepod Acartia tonsa. Marine Ecology Progress Series 390: 105–116.

    Article  CAS  Google Scholar 

  • Kim, C.-H., H.-J. Cho, J.-B. Shin, C.-H. Moon, and K. Matsuoka. 2002. Regeneration from hyaline resting cysts of Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae), a red tide organism along the Korean coast. 2002. Phycologia 41: 667–669.

    Article  Google Scholar 

  • Kim, C.-J., H.-G. Kim, C.-H. Kim, and H.-M. Oh. 2007. Life cycle of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters. Harmful Algae 6: 104–111.

    Article  Google Scholar 

  • Kim, D.-I., Y. Matsuyama, S. Nagasoe, M. Yamaguchi, Y.-H. Yoon, Y. Oshima, N. Imada, and T. Honjo. 2004. Effects of temperature, salinity, and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). Journal of Plankton Research 26: 61–66.

    Article  Google Scholar 

  • Kubanek, J., M.K. Hicks, J. Naar, and T.A. Villareal. 2005. Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnology and Oceanography 50: 883–895.

    Article  Google Scholar 

  • Kuo, A.Y., R.J. Byrne, P.V. Hyer, E.P. Ruzecki, and J.M. Brubaker. 1990. Practical application of theory for tidal-intrusion fronts. Journal of Waterway, Port, Coastal and Ocean Engineering 116: 341–361.

    Article  Google Scholar 

  • Landsberg, J.H. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113–390.

    Article  Google Scholar 

  • Lucas, L.V., J.R. Koseff, S.G. Monismith, J.E. Cloern, and J.K. Thompson. 1999. Processes governing phytoplankton blooms in estuaries. II: The role of horizontal transport. Marine Ecology Progress Series 187: 17–30.

    Article  Google Scholar 

  • Mackiernan, G.B. 1968. Seasonal distribution of dinoflagellates in the lower York River, Virginia. M. S. Thesis, 104. Williamsburg, VA: College of William and Mary.

  • Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • Marshall, H.G. 1995. Succession of dinoflagellate blooms in the Chesapeake Bay USA, p. 615–620. In Harmful marine algal blooms, P. Lassus, G. Arzul, E. Erard-Le Denn, P. Gentien and M. Marcillou-Le Baut. Lavoisier.

  • Marshall, H.G., L. Burchardt, and R. Lacouture. 2005. A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries. Journal of Plankton Research 27: 1083–1102.

    Google Scholar 

  • McKee, J. 2009. A report on the city of Norfolk’s existing and possible urban tree canopy. Virginia Geospatial Extension Program, Virginia Tech. http://www.cnr.vt.edu/gep/UTC/Norfolk%20UTC%20report-11232009.pdf. Accessed 14 January 2010.

  • Mulholland, M.R., R.E. Morse, G.E. Boneillo, P.W. Bernhardt, K.C. Filippino, L.A. Procise, J.L. Blanco-Garcia, H.G. Marshall, T.A. Egerton, W.S. Hunley, K.A. Moore, D.L. Berry, and C.J. Gobler. 2009. Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuaries and Coasts 32: 734–747.

    Article  CAS  Google Scholar 

  • Paerl, H.W. 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography 33: 823–847.

    Article  CAS  Google Scholar 

  • Park, J.G., M.K. Jeong, J.A. Lee, K.J. Cho, and O.S. Kwon. 2001. Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae Island, Korea. Phycologia 40: 292–297.

    Article  Google Scholar 

  • Park, K., H.S. Jung, H.S. Kim, and S.M. Ahn. 2005. Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. Marine Environmental Research 60: 171–193.

    Article  CAS  Google Scholar 

  • Seaborn, D.W., and H.G. Marshall. 2008. Dinoflagellate cysts within sediment collections from the southern Chesapeake Bay, and tidal regions of the James, York, and Rappahannock Rivers, Virginia. Virginia Journal of Science 59: 135–141.

    Google Scholar 

  • Sellner, K.G., S.G. Sellner, R.V. Lacouture, and R.E. Magnien. 2001. Excessive nutrients select for dinoflagellates in the stratified Patapsco River estuary: Margalef reigns. Marine Ecology Progress Series 220: 93–102.

    Article  CAS  Google Scholar 

  • Sellner, K.G., G.J. Doucette, and G.J. Kirkpatrick. 2003. Harmful algal blooms: Causes, impacts and detection. Journal of Industrial Microbiology and Biotechnology 30: 383–406.

    Article  CAS  Google Scholar 

  • Shen, J., and J. Lin. 2006. Modeling study of the influences of tide and stratification on age of water in the tidal James River. Estuarine, Coastal and Shelf Science 68: 101–112.

    Article  Google Scholar 

  • Shen, J., J.D. Boon, and A.Y. Kuo. 1999. A modeling study of a tidal intrusion front and its impact on larval dispersion in the James River estuary, Virginia. Estuaries and Coasts 22: 681–692.

    Article  Google Scholar 

  • Smayda, T.J. 1997a. What is a bloom: A commentary. Limnology and Oceanography 42: 1132–1136.

    Article  Google Scholar 

  • Smayda, T.J. 1997b. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography 42: 1137–1153.

    Article  Google Scholar 

  • Smayda, T.J. 1998. Patterns of variability characterizing marine phytoplankton, with examples from Narragansett Bay. ICES Journal of Marine Science 55: 562–573.

    Article  Google Scholar 

  • Sunda, W.G., E. Graneli, and C.J. Gobler. 2006. Positive feedback and the development and persistence of ecosystem disruptive algal blooms. Journal of Phycology 42: 963–974.

    Article  Google Scholar 

  • Tang, Y.Z., and C.J. Gobler. 2009. Characterization of the toxicity of Cochlodinium polykrikoides isolates from Northeast US estuaries to finfish and shellfish. Harmful Algae 8: 454–462.

    Article  CAS  Google Scholar 

  • Tang, Y.Z., and C.J. Gobler. 2010. Allelopathic effects of Cochlodinium polykrikoides isolates and blooms from the estuaries of Long Island, New York, on co-occurring phytoplankton. Marine Ecology Progress Series 406: 19–31.

    Article  Google Scholar 

  • Tango, P.J., R. Magnien, W. Butler, C. Luckett, M. Luckenbach, R. Lacouture, and C. Poukish. 2005. Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay. Harmful Algae 4: 525–531.

    Article  Google Scholar 

  • Tomas, C.R., and T.J. Smayda. 2008. Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7: 308–317.

    Article  CAS  Google Scholar 

  • Yamasaki, Y., S. Nagasoe, T. Matsubara, T. Shikata, Y. Shimasaki, Y. Oshima, and T. Honjo. 2007. Growth inhibition and formation of morphologically abnormal cells of Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup by cell contact with Cochlodinium polykrikoides Margalef. Marine Biology 152: 157–163.

    Article  Google Scholar 

Download references

Aknowledgements

Funding was provided by the National Oceanic and Atmospheric Administration’s Center for Sponsored Coastal Ocean Research Event Response Program, and through grants from the Virginia Environmental Endowment to MRM. We are grateful to the Hampton Roads Sanitation District and to the Virginia Department of Environmental Quality for supporting DATAFLOW mapping and shallow-water continuous monitoring efforts. We thank Ken Moore for providing VECOS continuous monitoring data, Harold Marshall and Todd Egerton for providing phytoplankton counts, and Chris Powell for instrumentation support. Lastly, we thank the editors, Carlos Duarte and Iris Anderson, and two anonymous reviewers for their helpful comments and suggestions for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan E. Morse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morse, R.E., Shen, J., Blanco-Garcia, J.L. et al. Environmental and Physical Controls on the Formation and Transport of Blooms of the Dinoflagellate Cochlodinium polykrikoides Margalef in the Lower Chesapeake Bay and Its Tributaries. Estuaries and Coasts 34, 1006–1025 (2011). https://doi.org/10.1007/s12237-011-9398-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-011-9398-2

Keywords

Navigation