Estuaries and Coasts

, Volume 33, Issue 4, pp 853–864 | Cite as

Adaptation of the Estuarine Fish Fundulus heteroclitus (Atlantic Killifish) to Polychlorinated Biphenyls (PCBs)

Article

Abstract

In this study, we describe remarkable intraspecific variation in sensitivity to the broadly distributed pollutants, polychlorinated biphenyls (PCBs), among wild populations of the nonmigratory estuarine Atlantic killifish (Fundulus heteroclitus). Variation among killifish populations was characterized in 28-day laboratory challenges using embryonic and larval life stages and the highly toxic, dioxin-like PCB congener, 3,3′4,4′,5-hexachlorobiphenyl (PCB126). In summarizing results for 24 populations, we show that killifish populations vary over four orders of magnitude in their sensitivity to PCB126 and that this variation is adaptive to the magnitude of contamination at their residence site. The four least-sensitive killifish populations reside in US Atlantic coast urban harbors >100 km apart from one another: New Bedford, MA, Bridgeport, CT, Newark, NJ, and Norfolk, VA, USA. Prior studies examining all but the CT population have shown that these killifish are relatively insensitive to local contaminants, with mixed evidence concerning the heritability of this trait. We show here that tolerance to PCB126 is extreme, with some mechanistic similarities among these four killifish populations. However, these populations do not respond identically to each other, and in at least one population, tolerance appears to degrade over the F1 and F2 generations tested. Complementary ongoing studies using molecular approaches provide opportunity to identify unique and shared mechanisms of tolerance in these independently evolving populations and explore the adaptive benefits and costs of contemporary evolutionary responses in the wild.

Keywords

Adaptation Evolution Killifish Polychlorinated biphenyls Dioxin Tolerance Fundulus heteroclitus 

Notes

Acknowledgements

We appreciate the assistance and encouragement of the staff at Bloodroot Restaurant (Bridgeport, CT), Peter Van Veld (Virginia Institute of Marine Sciences, VA), the technical support of Jane Copeland and James Heltshe, CSC Corporation, as well as helpful advice from reviewers of early drafts, Ruth Gutjahr-Gobell, Marguerite Pelletier, and Eric Waits, US Environmental Protection Agency. We also acknowledge the assistance of anonymous reviewers contributing to the final version of this manuscript. This is contribution number AED-09-014 of the US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division. This manuscript has been reviewed and approved for publication by the US EPA. Approval does not signify that the contents necessarily reflect the views and policies of the US EPA. Mention of trade names, products, or services does not convey and should not be interpreted as conveying official US EPA approval, endorsement, or recommendation.

References

  1. Adams, S.M., J.B. Lindmeier, and D.D. Duvernell. 2006. Microsatellite analysis of the phylogeography, Pleistocene history and secondary contract hypotheses for the killifish, Fundulus heteroclitus. Molecular Ecology 15(4): 1109–1123.CrossRefGoogle Scholar
  2. Andreason, E.A., J.M. Spitsbergen, R.L. Tanguay, J.J. Stegeman, W. Heideman, and R.E. Peterson. 2002. Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: Effects of developmental stage and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin exposure. Toxicological Sciences 68: 403–419.CrossRefGoogle Scholar
  3. Bello, S.M., D.G. Franks, J.J. Stegeman, and M.E. Hahn. 2001. Acquired resistance to Ah receptor agonists in a population of Atlantic killifish (Fundulus heteroclitus) inhabiting a marine Superfund site: In vivo and in vitro studies on the inducibility of xenobiotic metabolizing enzymes. Toxicological Sciences 60: 77–91.CrossRefGoogle Scholar
  4. Bieri, R.H., C. Hein, R.J. Huggett, P. Shou, H. Slone, C. Smith, and C.-W. Su. 1986. Polycyclic aromatic hydrocarbons in surface sediments from the Elizabeth River subestuary. International Journal of Environmental Analytical Chemistry 26: 97–113.CrossRefGoogle Scholar
  5. Billiard, S.M., A.R. Timme-Laragy, D.M. Wassenberg, C. Cockman, and R.T. Di Giulio. 2006. The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicological Sciences 92(2): 526–536.CrossRefGoogle Scholar
  6. Bruce, R.D., and D.J. Versteeg. 1992. A statistical procedure for modeling continuous toxicity data. Environmental Toxicology and Chemistry 11: 1485–1494.CrossRefGoogle Scholar
  7. Bunger, M.K., E. Glover, S.M. Moran, J.A. Walisser, G.P. Lahvis, E.L. Hsu, and C.A. Bradfield. 2008. Abnormal liver development and resistance to 2, 3, 7, 8-tetrachloro-p-dioxin toxicity in mice carrying a mutation in the DNA-binding domain of the aryl hydrocarbon receptor. Toxicological Sciences 106(1): 83–92.CrossRefGoogle Scholar
  8. Burnett, K.G., L.J. Bain, W.S. Baldwin, G.V. Callard, S. Cohen, D. Giulio, D.H. Evans, M. Gomez-Chiarri, M.E. Hahn, C.A. Hoover, S.I. Karchner, F. Katoh, D.L. MacLatchy, W.S. Marshall, J.N. Meyer, D.E. Nacci, M.F. Oleksiak, B.B. Rees, T.P. Singer, J.J. Stegeman, D.W. Towle, P.A. Van Veld, W.K. Vogelbein, A. Whitehead, R. Winn, and D.L. Crawford. 2007. Fundulus as the premier teleost model in environmental biology: Opportunities for new insights using genomics. Comparative Biochemistry and Physiology, Part D 2: 257–286.Google Scholar
  9. Cantrell, S.M., L.H. Lutz, D.E. Tillitt, and M. Hannink. 1996. Embryotoxicity of 2, 3, 7, 8 tetrachlorodibenzo-p-dioxin (TCDD): The embryonic vasculature is a physiological target for TCDD-induced DNA damage and apoptotic cell death in medaka (Oryzias latipes). Toxicology and Applied Pharmacology 141: 23–34.Google Scholar
  10. Carney, S.A., R.E. Peterson, and W. Heideman. 2004. 2,3,7,8 tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Molecular Pharmacology 66: 512–521.Google Scholar
  11. Cohen, C.S., J. Tirindelli, M. Gomez-Chiarri, and D. Nacci. 2006. Functional implications of major histocompatibility variation using estuarine fish populations. Integrative & Comparative Biology 46(6): 1016–1029.CrossRefGoogle Scholar
  12. Crawford, D.W., N.L. Bonnevie, and R.J. Wenning. 1995. Sources of pollution and sediment contamination in Newark Bay, New Jersey. Ecotoxicology and Environmental Safety 30(1): 85–100.CrossRefGoogle Scholar
  13. Duvernell, D.D., J.B. Lindmeier, K.E. Faust, and A. Whitehead. 2008. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Molecular Ecology 17: 1344–1360.CrossRefGoogle Scholar
  14. Ellegren, H., and B.C. Sheldon. 2008. Genetic basis of fitness differences in natural populations. Nature 452: 169–175.CrossRefGoogle Scholar
  15. Elskus, A.A., E. Monosson, A.E. McElroy, J.J. Stegeman, and D.S. Woltering. 1999. Altered CYP1A expression in Fundulus heteroclitus adults and larvae: A sign of pollution resistance? Aquatic Toxicology 45: 99–113.CrossRefGoogle Scholar
  16. Fisher, M.A., and M.F. Oleksiak. 2007. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics 8: 108–118.CrossRefGoogle Scholar
  17. Frederick, L.A., P.A. Van Veld, and C.D. Rice. 2007. Bioindicators of immune function in creosote-adapted estuarine killifish, Fundulus heteroclitus. Journal of Toxicology and Environmental Health Part A 70(17): 1433–1442.CrossRefGoogle Scholar
  18. Hahn, M.E. 2002. Biomarkers and bioassays for detecting dioxin-like compounds in the marine environment. Science of the Total Environment 289: 49–69.CrossRefGoogle Scholar
  19. Hahn, M.E., S.I. Karchner, D.G. Franks, and R.R. Merson. 2004. Aryl hydrocarbon receptor polymorphisms and dioxin resistance in Atlantic killifish. Pharmacogenetics 14: 131–143.CrossRefGoogle Scholar
  20. Hahn, M.E., S.I. Karchner, B.R. Evans, D.G. Franks, R.R. Merson, and J.M. Lapseritis. 2006. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates. Journal of Experimental Zoology Part A Comparative and Experimental Biology 305: 693–706.CrossRefGoogle Scholar
  21. Head, J.A., M.E. Hahn, and S.W. Kennedy. 2008. Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species. Environmental Science and Technology 42: 7535–7541.CrossRefGoogle Scholar
  22. Institute S.A.S. 2001. SAS/STAT users guide, version 8. Cary: SAS.Google Scholar
  23. Jayaraman, S., D.E. Nacci, D.M. Champlin, R.J. Pruell, K.J. Rocha, C.M. Custer, T.W. Custer, and M. Cantwell. 2009. PCBs and DDE in tree swallow (Tachycineta bicolor) eggs and nestlings from an estuarine PCB Superfund site, New Bedford Harbor, MA, USA. Environmental Science and Technology 43: 8387–8392.CrossRefGoogle Scholar
  24. Karchner, S.I., W.H. Powell, and M.E. Hahn. 1999. Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus: Evidence for a novel subfamily of ligand-binding basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) factors. Journal of Biological Chemistry 274: 33814–33824.CrossRefGoogle Scholar
  25. Lauenstein, G. G., and A. Y. Cantillo. 1993. Sampling and analytical methods of the National Status and trends Program National Benthic Surveillance and Mussel Watch Projects. Volume I: Overview and Summary of Methods. NOAA Technical Memorandum NOS ORCA 71.Google Scholar
  26. Lauenstein, G.G., and K.L. Kimbrough. 2007. Chemical contamination of the Hudson–Raritan Estuary as a result of the attack on the World Trade Center: Analysis of polychlorinated aromatic hydrocarbons and polychlorinated biphenyls in mussels and sediment. Marine Pollution Bulletin 54: 284–294.CrossRefGoogle Scholar
  27. Long, E.R., D.D. McDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19: 81–97.CrossRefGoogle Scholar
  28. Matson, C.W., B.W. Clark, M.J. Jenny, C.R. Fleming, M.E. Hahn, and R.T. Di Giulio. 2008. Development of the morpholino gene knockdown technique in Fundulus heteroclitus: A tool for studying molecular mechanisms in an established environmental model. Aquatic Toxicology 87: 289–295.CrossRefGoogle Scholar
  29. McMillan, A.M., M.J. Bagley, S.A. Jackson, and D.E. Nacci. 2006. Genetic diversity and structure of an estuarine fish (Fundulus heteroclitus) indigenous to sites associated with a highly contaminated urban harbor. Ecotoxicology 15: 539–548.CrossRefGoogle Scholar
  30. Meyer, J.N., and R.T. Di Giulio. 2003. Heritable adaptation and fitness costs in killifish (Fundulus heteroclitus) inhabiting a polluted estuary. Ecological Applications 13(2): 490–503.CrossRefGoogle Scholar
  31. Meyer, J.N., D.E. Nacci, and R.T. Di Giulio. 2002. Cytochrome P450A(CYP1A) in killifish (Fundulus heteroclitus): Heritability of altered expression and relationship to survival in contaminated sediments. Toxicological Sciences 68: 69–81.CrossRefGoogle Scholar
  32. Meyer, J.N., D.M. Wassenberg, S.I. Karchner, M.E. Hahn, and R.T. Di Giulio. 2003. Expression and inducibility of aryl hydrocarbon receptor pathway genes in wild-caught killifish (Fundulus heteroclitus) with contaminant-exposure histories. Environmental Toxicology and Chemistry 22(10): 2337–2343.CrossRefGoogle Scholar
  33. Miller, M.R., J.P. Dunham, W.A. Amores, W.A. Cresko, and E.A. Johnson. 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research 17: 240–248.CrossRefGoogle Scholar
  34. Mitton, J.B. 1994. Selection in natural populations. New York: Oxford University Press.Google Scholar
  35. Mulvey, M., M.C. Newman, W. Vogelbein, M.A. Unger, and D.R. Ownby. 2003. Genetic structure and mtDNA diversity of Fundulus heteroclitus populations from polycyclic aromatic hydrocarbon-contaminated sites. Environmental Toxicology and Chemistry 22: 671–677.Google Scholar
  36. Nacci, D., L. Coiro, D. Champlin, S. Jayaraman, R. McKinney, T. Gleason, W.R. Munns Jr., J. Specker, and K. Cooper. 1999. Adaptation of wild fish populations to dioxin-like environmental contamination. Marine Biology 134: 9–17.CrossRefGoogle Scholar
  37. Nacci, D., L. Coiro, D. Champlin, S. Jayaraman, and R. McKinney. 2002a. Predicting the occurrence of genetic adaptation to dioxin-like compounds in populations of the estuarine fish Fundulus heteroclitus. Environmental Toxicology and Chemistry 21(7): 1525–1532.Google Scholar
  38. Nacci, D., T. Gleason, R. Gutjahr-Gobell, M. Huber, and W.R. Munns Jr. 2002b. Effects of environmental stressors on wildlife populations. In Coastal and estuarine risk assessment: risk on the edge, ed. M.C. Newman. Washington, DC: CRC/Lewis.Google Scholar
  39. Nacci, D., L. Coiro, D. Wasserman, and R. Di Giuilio. 2005. A non-destructive technique to measure cytochrome P4501A enzyme activity in living embryos of the estuarine fish Fundulus heteroclitus. In Techniques in aquatic toxicology, vol. 2, ed. G.K. Ostrander, 209–225. Boca Raton: Taylor and Francis.Google Scholar
  40. Nacci, D., M. Huber, D. Champlin, S. Jayaraman, S. Cohen, E. Gauger, A. Fong, and M. Gomez-Chiarri. 2009. Evolution of tolerance to PCBs and susceptibility to a bacterial pathogen (Vibrio harveyi) in Atlantic killifish (Fundulus heteroclitus) from New Bedford (MA, USA) harbor. Environmental Pollution 157: 857–864.CrossRefGoogle Scholar
  41. Nelson, W. G., B. J. Bergen, S. J. Benyi, G. Morrison, R. A. Voyer, C. J. Strobel, S. Rego, G. Thursby, and C. E. Pesch. 1996. New Bedford harbor long-term monitoring assessment report: Baseline sampling. US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI. EPA/600/R-96/097.Google Scholar
  42. Okey, A.B., M.A. Franc, I.D. Moffat, N. Tijet, P.C. Boutros, M. Korkaainen, J. Tuomisto, and R. Pohjanvirta. 2005. Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: The case of the aryl hydrocarbon receptor. Toxicology and Applied Pharmacology 207: 43–51.CrossRefGoogle Scholar
  43. Oleksiak, M.F. 2008. Changes in gene expression due to chronic exposure to environmental pollutants. Aquatic Toxicology 90: 161–171.CrossRefGoogle Scholar
  44. Ownby, D.R., M.C. Newman, M. Mulvey, W.K. Vogelbein, M.A. Unger, and L.F. Arzayus. 2002. Fish (Fundulus heteroclitus) populations with different exposure histories differ in tolerance of creosote-contaminated sediments. Environmental Toxicology and Chemistry 21(9): 1987–1902.Google Scholar
  45. Payne, J.F., A. Mathieu, and T.K. Collier. 2003. Ecotoxicological studies focusing on marine and freshwater fish. In PAHs: An ecotoxicological perspective, ed. P.E.T. Douben, 191–224. Hoboken: Wiley.CrossRefGoogle Scholar
  46. Powell, W.H., R. Bright, S.M. Bello, and M.E. Hahn. 2000. Developmental and tissue-specific expression of AHR1, AHR2, and ARNT2 in dioxin-sensitive and -resistant populations of the marine fish, Fundulus heteroclitus. Toxicological Sciences 57: 229–239.CrossRefGoogle Scholar
  47. Prince, R., and K.R. Cooper. 1995. Comparisons of the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on chemically-impacted and non-impacted subpopulations of Fundulus heteroclitus: I. TCDD toxicity. Environmental Toxicology and Chemistry 14: 579–588.Google Scholar
  48. Roark, S.A., D. Nacci, L. Coiro, D. Champlin, and S.I. Guttman. 2005. Population genetic structure of a non-migratory marine fish Fundulus heteroclitus across a strong gradient of PCB contamination. Environmental Toxicology and Chemistry 24(3): 717–725.CrossRefGoogle Scholar
  49. Rogerson, P.F., S.C. Schimmel, and G. Hoffman. 1985. Chemical and biological characterization of black rock harbor dredged material. D-85-9. Technical Report. Vicksburg: U.S. Army Corps of Engineers.Google Scholar
  50. Safe, S. 1990. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). CRC Critical Reviews in Toxicology 21: 51–88.CrossRefGoogle Scholar
  51. Teo, S.L.H., and K.W. Able. 2003. Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored marsh. Estuaries 26: 720–730.CrossRefGoogle Scholar
  52. Tillitt, D.E., P.M. Cook, J.P. Giesy, W. Heideman, and R.E. Peterson. 2008. Reproductive impairment of Great Lakes lake trout by dioxin-like chemicals. In The toxicology of fishes, ed. R.T. Di Giulio and D.E. Hinton, 819–876. Washington, DC: Taylor and Francis.Google Scholar
  53. Tirindelli, J. 2007. A comparison of immunogenetic profiles between PCB contaminated and reference killifish populations. Master of Science. San Francisco State University, San Francisco, CAGoogle Scholar
  54. Van den Berg, M., L. Birnbaum, A.T.C. Bosveld, B. Brunstrom, P. Cook, M. Feely, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X.R. van Leeuwen, A.K. Djien Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Stephen, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Wærn, and T. Zacharewsk. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives 106: 775–792.CrossRefGoogle Scholar
  55. Van Veld, P.A., and D. Nacci. 2008. Chemical tolerance: Acclimation and adaptations to chemical stress. In The toxicology of fishes, ed. R.T. Di Giulio and D.E. Hinton. Washington, DC: Taylor and Francis.Google Scholar
  56. Walker, S.E., R.M. Dickhut, and C. Chisholm-Brause. 2004. Polycyclic aromatic hydrocarbons in a highly industrialized urban estuary: Inventories and trends. Environmental Toxicology and Chemistry 23(11): 2655–2664.CrossRefGoogle Scholar
  57. Weis, J.S. 2002. Tolerance to environmental contaminants in the killifish, Fundulus heteroclitus. Human and Ecological Risk Assessment 8(5): 933–953.CrossRefGoogle Scholar
  58. Whyte, J.J., R.E. Jung, C.J. Scmitt, and D.E. Tillitt. 2000. Ethoxyresorufin-o-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology 30(4): 347–569.CrossRefGoogle Scholar
  59. Williams, L.M., and M.F. Oleksiak. 2008. Signatures of selection in natural populations adapted to chronic pollution. BMC Evolutionary Biology 8: 282–294.CrossRefGoogle Scholar
  60. Wirgin, I., and J.R. Waldman. 2004. Resistance to contaminants in North American fish populations. Mutation Research 55(1–2): 1897–1902.Google Scholar

Copyright information

© U.S. Government 2010

Authors and Affiliations

  • Diane E. Nacci
    • 1
  • Denise Champlin
    • 1
  • Saro Jayaraman
    • 1
  1. 1.Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyNarragansettUSA

Personalised recommendations