Estuaries and Coasts

, Volume 32, Issue 5, pp 871–892

Peat Accretion Histories During the Past 6,000 Years in Marshes of the Sacramento–San Joaquin Delta, CA, USA

  • Judith Z. Drexler
  • Christian S. de Fontaine
  • Thomas A. Brown


The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento–San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age–depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year−1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.


Autocompaction Radiocarbon age determination Sea level rise Soil volume Tidal freshwater marsh Vertical accretion 


  1. Allen, J.R.L. 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19: 1155–1231.CrossRefGoogle Scholar
  2. Anisfield, S.C., M.J. Tobin, and G. Benoit. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound. Estuaries 22: 231–244.CrossRefGoogle Scholar
  3. Atwater, B.F. 1980. Attempts to correlate late Quaternary climatic records between San Francisco Bay, the Sacramento–San Joaquin Delta, and the Mokelumne River, California. Ph.D. Dissertation. University of Delaware, Newark, DE, USA.Google Scholar
  4. Atwater, B.F. 1982. Geologic maps of the Sacramento–San Joaquin Delta, California. US Geological Survey Miscellaneous Field Studies Map MF-1401, 20 map sheets, scale 1:24,000, Reston, Virginia.Google Scholar
  5. Atwater, B.F. and D.F. Belknap. 1980. Tidal-wetland deposits of the Sacramento–San Joaquin Delta, California. Pacific Coast Paleogeography Symposium 4: 89–103.Google Scholar
  6. Atwater, B.F., C.W. Hedel, and E.J. Helley. 1977. Late Quaternary depositional history, Holocene sea-level changes, and vertical crust movement, southern San Francisco Bay, California. US Geological Survey Professional Paper 1014, Washington, DC.Google Scholar
  7. Bartberger, E.C. 1976. Sediment cores and sediment rates, Chincoteague Bay, Maryland and Virginia. Journal of Sedimentary Petrology 46: 326–336.Google Scholar
  8. Bloom, A.L. 1964. Peat accumulation and compaction in a Connecticut coastal marsh. Journal of Sedimentary Petrology 34: 599–603.Google Scholar
  9. Byrne, R.B., B.L. Ingram, S. Starratt, and F. Malamud-Roam. 2001. Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco Estuary. Quaternary Research 55: 66–76.CrossRefGoogle Scholar
  10. Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to sea-level rise: Wetland elevation trends and process controls. In Wetlands and natural resource management: Ecological studies Vol. 190, ed. J.T.A. Verhoeven, B. Beltman, R. Bobbink, and D.F. Whigham, 271–292. Berlin: Springer.CrossRefGoogle Scholar
  11. California Department of Water Resources. 1995. Sacramento–San Joaquin Delta Atlas. Central District, Sacramento, California, USA,
  12. Church, J.A. and N.J. White. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters 33: L01602. doi:10.1029/2005GL024826.CrossRefGoogle Scholar
  13. Cayan, D.R. and D.H. Peterson. 1993. Spring climate and salinity in the San Francisco Bay estuary. Water Resources Research 29: 293–303.CrossRefGoogle Scholar
  14. Conomos, T.J. 1979. Properties and circulation of San Francisco Bay waters. In San Francisco Bay: The urbanized estuary, ed. T.J. Conomos, 47–84. San Francisco: Pacific Division, American Association for the Advancement of Science.Google Scholar
  15. DeLaune, R.D., R.H. Baumann, and J.G. Gosselink. 1983. Relationships among vertical accretion, coastal submergence, and erosion in a Louisiana Gulf coast marsh. Journal of Sedimentary Petrology 53: 147–157.Google Scholar
  16. Deverel, S.J. and S.A. Rojstaczer. 1996. Subsidence of agricultural lands in the Sacramento–San Joaquin Delta, California: Role of aqueous and gaseous carbon fluxes. Water Resources Research 32: 2359–2367.CrossRefGoogle Scholar
  17. Deverel, S.J., and D.A. Leighton. 2009. Subsidence causes and rates in the Sacramento–San Joaquin Delta and Suisun Marsh. San Francisco Estuary and Water Science, in press.Google Scholar
  18. Deverel, S.J., B. Wang, and S. Rojstaczer. 1998. Subsidence of organic soils, Sacramento–San Joaquin Delta, California. In Land subsidence case studies and current research, special publication no. 8, ed. J.W. Borchers, 489–502. Denver: Association of Engineering Geologists.Google Scholar
  19. Drexler, J.Z., C.S. de Fontaine, and D.L. Knifong. 2007. Age determination of the remaining peat in the Sacramento–San Joaquin Delta, California, USA. US Geological Survey Open File Report 2007-1303, Sacramento, California.Google Scholar
  20. Drexler, J.A., C.S. de Fontaine, and S.J. Deverel. 2009. The legacy of wetland drainage on the remaining peat in the Sacramento–San Joaquin Delta, California, USA. Wetlands 29: 372–386.CrossRefGoogle Scholar
  21. Enzel, Y., D.R. Cayan, R.Y. Anderson, and S.G. Wells. 1989. Atmospheric circulation during Holocene lake stands in the Mojave Desert: Evidence of regional climate change. Nature 341: 44–47.CrossRefGoogle Scholar
  22. French, J. 2006. Tidal marsh sedimentation and resilience to environmental change: Exploratory modeling of tidal, sea-level, and sediment supply forcing in predominantly allochthonous systems. Marine Geology 235: 119–136.CrossRefGoogle Scholar
  23. Gilbert, G.K. 1917. Hydraulic-mining debris in the Sierra Nevada. US Geological Survey professional paper 105. Washington, DC: US Government Printing Office.Google Scholar
  24. Givelet, N., G. Le Roux, A. Cheburkin, B. Chen, J. Frank, M. Goodsite, H. Kempter, M. Krachler, T. Noernberg, N. Rausch, S. Rheinberger, F. Roos-Barraclough, A. Sapkota, C. Scholz, and W. Shotyk. 2004. Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. Journal of Environmental Monitoring 6: 481–492.CrossRefGoogle Scholar
  25. Goman, M. and L. Wells. 2000. Trends in river flow affecting the northeastern reach of the San Francisco Bay Estuary over the past 7000 years. Quaternary Research 54: 206–217.CrossRefGoogle Scholar
  26. Hatton, R.S., R.D. DeLaune, and W.H. Patrick Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28: 494–502.Google Scholar
  27. Heegaard, E., H.J.B. Birks, and R.J. Telford. 2005. Relationships between calibrated ages and depth in stratigraphical sequences: An estimation procedure by mixed-effect regression. The Holocene 15: 612–618.CrossRefGoogle Scholar
  28. Heiri, O., A.F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  29. Hensel, P.F., J.W. Day Jr., and D. Pont. 1998. Wetland vertical accretion and soil elevation change in the Rhone River Delta, France: The importance of riverine flooding. Journal of Coastal Research 15: 668–681.Google Scholar
  30. Hickman, J.C. (ed). 1993. The Jepson manual. Berkeley: University of California Press.Google Scholar
  31. Hillel, D. 1998. Environmental soil physics: Fundamentals, applications, and environmental considerations. San Diego: Elsevier Science and Technology.Google Scholar
  32. Ingebritsen, S.E. and M.E. Ikehara. 1999. Sacramento–San Joaquin Delta: The sinking heart of the state. In Land subsidence in the United States, ed. D. Galloway, D.R. Jones, and S.E. Ingebritsen, 83–94. Reston: US Geological Survey. Circular 1182.Google Scholar
  33. Kaye, C.A. and E.S. Barghoorn. 1964. Late Quaternary sea level and crustal rise at Boston, Massachusetts with notes on the autocompaction of peat. Geological Society of America Bulletin 75: 63–80.CrossRefGoogle Scholar
  34. Keene, H.W. 1971. Postglacial submergence and salt marsh evolution in New Hampshire. Maritime Sediments 7: 64–68.Google Scholar
  35. Khan, H. and G.S. Brush. 1994. Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries 17: 345–360.CrossRefGoogle Scholar
  36. LaMarche Jr., V. 1973. Holocene climatic variations inferred from tree line fluctuations in the White Mountains California. Quaternary Research 3: 632–660.CrossRefGoogle Scholar
  37. Liu, K.B., S. Sun, and X. Jiang. 1992. Environmental change in the Yangtze River delta since 12,000 years BP. Quaternary Research 38: 32–45.CrossRefGoogle Scholar
  38. McKensie, N., K. Coughlan, and H. Cresswell. 2002. Soil physical measurement and interpretation for land evaluation. Australian Collaborative Land Evaluation Program, Natural Heritage Trust, CSIRO Publishing.Google Scholar
  39. Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, and Z.-C. Zhao. 2007. Global climate projections. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, ed. S.D. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor, and H.L. Miller, 749–845. Cambridge: Cambridge University Press.Google Scholar
  40. Merrill, J.Z. and J.C. Cornwell. 2000. The role of oligohaline marshes in estuarine nutrient cycling. In Concepts and controversies in tidal marsh ecology, ed. M. Weinstein and D.A. Kreeger, 425–441. Dordrecht: Kluwer.Google Scholar
  41. Miller Jr., R.G. 1998. Beyond ANOVA: Basic of applied statistics. Boca Raton: CRC.Google Scholar
  42. Miller, R.L., L. Hastings, and R. Fujii. 1997. Hydrologic treatments affect gaseous carbon loss from organic soils, Twitchell Islands, California, October 1995–December 1997. US Geological Survey Water-Resources Investigations Report 00-4042, Sacramento, California.Google Scholar
  43. Mitsch, W.J. and J.G. Gosselink. 2000. Wetlands, 3rd ed. New York: Wiley.Google Scholar
  44. Mount, J. and R. Twiss. 2005. Subsidence, sea level rise, seismicity in the Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science 3(1): Article 5. Scholar
  45. Neubauer, S.C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78: 78–88.CrossRefGoogle Scholar
  46. Okruszko, H. 1971. Determination of specific gravity of hydrogenic soils on the basis of their mineral particles content. Wiadomosci Instytutu Melioracji i Uzytkow Zielonych X(1): 47–54.Google Scholar
  47. Orr, M., S. Crooks, and P.B. Williams. 2003. Will restored tidal marshes be sustainable? San Francisco Estuary and Watershed Science 1(1): Article 5. Scholar
  48. Orson, R.A., R.L. Simpson, and R.E. Good. 1990. Rates of sediment accumulation in a tidal freshwater marsh. Journal of Sedimentary Petrology 60: 859–869.Google Scholar
  49. Penland, S. and K.E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research 6: 323–342.Google Scholar
  50. Pizzuto, J.E. and A.E. Schwendt. 1997. Mathematical modeling of autocompaction of a Holocene transgressive valley-fill deposit, Wolfe Glade, Delaware. Geology 25: 57–60.CrossRefGoogle Scholar
  51. Prokopovich, N.P. 1985. Subsidence of peat in California and Florida. Bulletin of the Association of Engineering Geologists 22: 395–420.Google Scholar
  52. Redding, T.E. and K.J. Devito. 2006. Particle densities of wetland soils in northern Alberta, Canada. Canadian Journal of Soil Science 86: 57–60.Google Scholar
  53. Redfield, A.C. 1967. Postglacial change in sea level in the western north Atlantic Ocean. Science 157: 687–690.CrossRefGoogle Scholar
  54. Reed, D.J. 2000. Coastal biogeomorphology: An integrated approach to understanding the evolution, morphology, and sustainability of temperate coastal marshes. In Estuarine science: A synthetic approach to research and practice, ed. J.E. Hobbie, 347–361. Washington, DC: Island Press.Google Scholar
  55. Reed, D.J. 2002a. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology 48: 233–243.CrossRefGoogle Scholar
  56. Reed, D.J. 2002b. Understanding tidal marsh sedimentation in the Sacramento–San Joaquin Delta, California. Journal of Coastal Research SI 36: 605–611.Google Scholar
  57. Reimer, P.J., M.G.L. Baillie, E. Bard, A. Bayliss, J.W. Beck, C.J.H. Bertrand, P.G. Blackwell, C.E. Buck, G.S. Burr, K.B. Cutler, P.E. Damon, R.L. Edwards, R.G. Fairbanks, M. Friedrich, T.P. Guilderson, A.G. Hogg, K.A. Hughen, B. Kromer, G. McCormac, S. Manning, C.B. Ramsey, R.W. Reimer, S. Remmele, J.R. Southon, M. Stuiver, S. Talamo, F.W. Taylor, J. van der Plicht, and C.E. Weyhenmeyer. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46: 1029–1058.Google Scholar
  58. Robinson, S.D. and T.R. Moore. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochemical Cycles 13: 591–601.CrossRefGoogle Scholar
  59. Rojstaczer, S. and S.J. Deverel. 1993. Time dependence in atmospheric carbon inputs from drainage of organic soils. Geophysical Research Letters 20: 1383–1386.CrossRefGoogle Scholar
  60. Rojstaczer, S. and S.J. Deverel. 1995. Land subsidence in drained histosols and highly organic mineral soils of California. Soil Science Society of America Journal 59: 1162–1167.CrossRefGoogle Scholar
  61. Rojstaczer, S.A., R.E. Hamon, S.J. Deverel, and C.A. Massey. 1991. Evaluation of selected data to assess the causes of subsidence in the Sacramento-San Joaquin Delta, California. Open-File Report 91-0193, US Geological Survey, Reston, Virginia.Google Scholar
  62. Roman, C.T., J.A. Peck, J.R. Allen, J.W. King, and P.G. Appleby. 1997. Accretion of a New England (USA) salt marsh in response to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45: 717–727.CrossRefGoogle Scholar
  63. Sawai, Y., N. Hiroo, and Y. Yasuda. 2002. Fluctuations in relative sea-level during the past 3000 yr in the Onnetoh estuary, Hokkaido, northern Japan. Journal of Quaternary Science 17: 607–622.CrossRefGoogle Scholar
  64. Schoellhamer, D., S. Wright, J.Z. Drexler, M. Stacey, and S.C. Model. 2007. White paper for the California Bay/Delta Science Program. Sacramento: The Resources Agency of the State of California.Google Scholar
  65. Service, R.J. 2007. Delta blues, California style. Science 317: 442–445.CrossRefGoogle Scholar
  66. Shennan, I., A.J. Long, M.M. Rutherford, J.B. Innes, F.M. Green, J.R. Kirby, and K.J. Walker. 1998. Tidal marsh stratigraphy, sea-level change and large earthquake—II: Submergence events during the last 3500 years at Netarts Bay, Oregon, USA. Quaternary Science Reviews 17: 365–393.CrossRefGoogle Scholar
  67. Shlemon, R.J. and E.L. Begg. 1975. Late quaternary evolution of the Sacramento–San Joaquin Delta, California. In Quaternary studies, ed. R.P. Suggate and M.M. Creswell, 259–266. Wellington: The Royal Society of New Zealand.Google Scholar
  68. Stanley, D.J. and A.G. Warne. 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265: 228–231.CrossRefGoogle Scholar
  69. Stevenson, J.C., M.S. Kearney, and E.C. Pendleton. 1986. Vertical accretion rates in marshes with varying rates of sea-level rise. In Estuarine variability, ed. D. Wolfe, 241–260. New York: Academic.Google Scholar
  70. Stine, S. 1990. Late Holocene fluctuations of Mono Lake, eastern California. Palaeogeography, Palaeoclimatology, Palaeoecology 78: 333–381.CrossRefGoogle Scholar
  71. Stuiver, M. and P.J. Reimer. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–230.Google Scholar
  72. Temmerman, S., G. Govers, S. Wartel, and P. Meire. 2003. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surface Processes and Landforms 28: 739–755.CrossRefGoogle Scholar
  73. Thompson, J. 1957. The settlement geography of the Sacramento–San Joaquin Delta, California. Ph.D. Dissertation. Stanford University, Stanford, California, USA.Google Scholar
  74. Tornqvist, T.E., A.F.M. De Jong, W.A. Oosterbaan, and K. Van der Borg. 1992. Accurate dating or organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34: 566–577.Google Scholar
  75. Tornqvist, T.E., J.L. Gonzalez, L.E. Newsom, K. van der Borg, A.F.M. de Jong, and C.W. Kurnik. 2004. Deciphering Holocene sea-level history on the US Gulf Coast: A high-resolution record from the Mississippi Delta. GSA Bulletin 116: 1026–1039.CrossRefGoogle Scholar
  76. Tornqvist, T.E., S.J. Bick, K. van der Borg, and A.F.M. de Jong. 2006. How stable is the Mississippi Delta? Geology 34: 697–700.CrossRefGoogle Scholar
  77. Turetsky, M.R., S.W. Manning, and R.K. Wieder. 2004. Dating recent peat deposits. Wetlands 24: 324–356.CrossRefGoogle Scholar
  78. United States Department of Agriculture Soil Conservation Service. 2006. Keys to soil taxonomy. 10th edition.
  79. van Heteren, S. and O. van de Plassche. 1997. Influence of relative sea-level change and tidal inlet development on barrier-spit stratigraphy, Sandy Neck, Massachusetts. Journal of Sedimentary Research 67: 350–363.Google Scholar
  80. Weber-Band, J. 1998. Neotectonics of the Sacramento-San Joaquin Delta area, east central Coast Ranges, California. Ph.D. thesis, University of California, Berkeley, California, USA.Google Scholar
  81. Wells, L.E. 1995. Radiocarbon dating of Holocene tidal marsh deposits: Applications to reconstructing relative sea level changes in the San Francisco estuary. In Quaternary geochronology and paleoseismology, ed. J.S. Noller, W.R. Lettis, and J.M. Sowers, 3.95–3.102. Washington DC: Nuclear Regulatory Commission.Google Scholar
  82. Witter, R.C., H.M. Kelsey, and E. Hemphill-Haley. 2003. Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. Geological Society of America Bulletin 115: 1289–1306.CrossRefGoogle Scholar
  83. Wright Jr., H.E. 1991. Coring tips. Journal of Paleolimnology 6: 37–49.CrossRefGoogle Scholar
  84. Wright, S.A. and D.H. Schoellhamer. 2004. Trends in the sediment yield of the Sacramento River, California, 1957–2001. San Francisco Estuary and Watershed Science 2(2): Article 2. Scholar
  85. Wright, S.A. and D.H. Schoellhamer. 2005. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento–San Joaquin River Delta. Water Resources Research 41: W09428. doi:10.1029/2004WR003753.CrossRefGoogle Scholar
  86. Yang, S.L., I.M. Belkin, A.I. Belina, Q.Y. Zhao, J. Zhu, and P.X. Ding. 2003. Delta response to decline in sediment supply from the Yangtze River: Evidence of the recent four decades and expectations for the next half-century. Estuarine, Coastal and Shelf Science 57: 689–699.CrossRefGoogle Scholar
  87. Zoltai, S.C. and J.D. Johnson. 1984. Development of a treed bog island in a minerotrophic fen. Canadian Journal of Botany 63: 1076–1085.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2009

Authors and Affiliations

  • Judith Z. Drexler
    • 1
  • Christian S. de Fontaine
    • 1
  • Thomas A. Brown
    • 2
  1. 1.US Geological Survey, California Water Science CenterSacramentoUSA
  2. 2.Center for Accelerator Mass SpectrometryLawrence Livermore National Laboratory L-397LivermoreUSA

Personalised recommendations