Skip to main content
Log in

Patterns of Phytoplankton Variability in the Tagus Estuary (Portugal)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Data were collected in the Tagus estuary from 1999–2007 on a monthly basis and combined with published results and for several previous years between 1980 and 1995, so that a comprehensive analysis could be performed over a non-continuous 27-year period. Sampling conditions and methods were similar for all datasets. Extreme wet and dry years were observed. River flow was strongly linked to phytoplankton abundance, with the highest biomass attained in dry years. The observed range of annual median Chl a was 1.8–7.6 µg L−1 and the overall median was 3.5 µg L−1. Dissolved inorganic nitrogen (DIN) and silicate showed a clear seasonal pattern, with a maximum in winter−spring, indicating a freshwater origin. Although wastewater treatment started in 1990, no difference was detected from 1980 to the present in terms of DIN and phosphorus. The recorded seasonal pattern for biomass with highest values in late spring–summer period is comparable to other temperate tidally influenced ecosystems. In spite of interannual differences in terms of Chl a concentration or the time of the maximum Chl a occurrence, a repeatable pattern could be identified. The mean growth development time for phytoplankton was 163 days (June 12) ranging 129–206 days (May 9–July 26) during the sampling period. No obvious changes in phytoplankton community structure were observed over time: diatoms were always the dominant group, and cryptophytes were relatively abundant throughout autumn–winter. The dominant species have remained essentially the same since 1969. River inflow, light availability, and temperature were the major factors shaping phytoplankton variability patterns. The strong influence of tidal mixing on the estuarine waters appears to lower the risk of potential eutrophication in the Tagus estuary. The lack of change in nutrients and phytoplankton biomass and composition observed in this study is an important contribution towards the assessment of natural variability versus responses to man-induced inputs in this severely anthropogenically disturbed estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • APHA, AWWA and APCF. 1971. Standard methods for the examination of water and waste water, Amer, 13th ed. New York: American Public Health Association.

    Google Scholar 

  • American Geophysical Union Chapman Conference. 2007. Long-time series observations in coastal ecosystems: Comparative analysis of phytoplankton dynamics on regional to global scales. Rovinj (Croatia), 8-12 October

  • Amorim, A., and B. Dale. 2006. Historical cyst record as evidence for the recent introduction of the dinoflagellate Gymnodinium catenatum in the north-eastern Atlantic. African Journal of Marine Sciences 28: 193–197.

    Google Scholar 

  • Bendschneider, K., and N.J. Robison. 1952. A new spectrophotometric determination of nitrite in seawater. Journal of Marine Research 11: 87–96.

    CAS  Google Scholar 

  • Bettencourt, A.M.M., M.O. Andreae, Y. Cais, M.L. Gomes, L. Schebek, L.F. Vilas-Boas, and S. Rapsomanikis. 1999. Organotin in the Tagus estuary. Aquatic Ecology 33: 271–280. doi:10.1023/A:1009966006325.

    Article  Google Scholar 

  • Borum, J. 1996. Shallow waters and land/sea boundaries. In Eutrophication in marine coastal ecosystems, ed. B.B. Jørgensen and K. Richardson, 179–203. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Braunschweig, F., F. Martins, P. Chambel, and R. Neves. 2003. A methodology to estimate renewal time scales in estuaries: The Tagus estuary case. Ocean Dynamics 53: 137–145. doi:10.1007/s10236-003-0040-0.

    Article  Google Scholar 

  • Brogueira, M.J., M.R. Oliveira, and G. Cabeçadas. 2007. Phytoplankton community structure by key environmental variables in Tagus estuary, Portugal. Marine Environmental Research 64: 616–628. doi:10.1016/j.marenvres.2007.06.007.

    Article  CAS  Google Scholar 

  • Brotas, V., M.T. Cabrita, A. Portugal, J. Serôdio, and F. Catarino. 1995. Spatio-temporal distribution of the microphytobentic biomass in intertidal flats of Tagus Estuary (Portugal). Hydrobiologia 300/301: 93–104. doi:10.1007/BF00024451.

    Article  Google Scholar 

  • Cabrita, M.T. 1997. Inorganic nitrogen dynamics in the Tagus estuary (Portugal): Spatial and temporal variation in input and uptake of nitrate and ammonium. University of Lisbon PhD thesis.

  • Cabrita, M.T., and V. Brotas. 2000. Seasonal variation in denitrification and dissolved nitrogen fluxes in the intertidal sediments of the Tagus estuary, Portugal. Marine Ecology Progress Series 202: 51–65. doi:10.3354/meps202051.

    Article  CAS  Google Scholar 

  • Cabrita, M.T., F. Catarino, and G. Slawyk. 1999. Interactions of light, temperature and inorganic nitrogen in controlling plankton nitrogen utilisation in the Tagus estuary. Aquatic Ecology 33: 251–261. doi:10.1023/A:1009993300873.

    Article  CAS  Google Scholar 

  • Caraco, N., J. Cole, and G.E. Likens. 1990. A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9: 277–290. doi:10.1007/BF00000602.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381. doi:10.1016/0278-4343(87)90042-2.

    Article  Google Scholar 

  • Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with same general lessons from sustained investigation of San Francisco Bay (California, USA). Reviews of Geophysics 34: 127–168.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253. doi:10.3354/meps210223.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2007. Talk presented at the Chapman Conference on Long Time-Series observations in coastal ecosystems: Comparative analysis of phytoplankton dynamics on regional to global scales. Rovinj (Croatia), 8-12 October.

  • Cloern, J.E., A.D. Jassby, J.K. Thompson, and K.A. Hieb. 2007. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proceedings of the National Academy of Sciences 104: 18561–18565. doi:10.1073/pnas.0706151104.

    Article  CAS  Google Scholar 

  • Colijn, F. 1984. Characteristics of primary production in the Dutch Wedden Sea. Netherlands Institute for Sea Research Publications Series 10: 41–50.

    Google Scholar 

  • Conley, D.J. 2000. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410: 87–96. doi:10.1023/A:1003784504005.

    Article  Google Scholar 

  • Costa, M.J., and H.N. Cabral. 1999. Changes in the Tagus nursery function for commercial fish species: Some perspectives for management. Aquatic Ecology 33: 287–292. doi:10.1023/A:1009904621771.

    Article  Google Scholar 

  • Egge, J.K., and D.L. Aksnes. 1992. Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series 83: 281–289.

    Article  CAS  Google Scholar 

  • Escaravage, V., T.C. Prins, C. Nijdam, A.C. Smaal, and J.C.H. Peeters. 1999. Response to phytoplankton communities to nitrogen input reduction in mesocosm experiments. Marine Ecology Progress Series 179: 187–199. doi:10.3354/meps179187.

    Article  CAS  Google Scholar 

  • Fanning, K.A., and M.E.Q. Pilson. 1973. On the spectrophotometric determination of dissolved silica in natural waters. Analytical Chemistry 45: 136–141.

    Article  CAS  Google Scholar 

  • Ferreira, J.G., T. Simas, A. Nobre, M.C. Silva, K. Shifferegger, and J. Lencart-Silva. 2003. Identification of sensitive areas and vulnerable zones in transitional and coastal Portuguese systems. INAG and IMAR editors.

  • Fiadeiro, P. 1987. Estudos sobre a dinâmica e qualidade da água no estuário do Tejo. Anais do Instituto Hidrográfico 8: 73–83.

    Google Scholar 

  • Gameiro, C., P. Cartaxana, M.T. Cabrita, and V. Brotas. 2004. Variability in chlorophyll and phytoplankton composition in an estuarine system. Hydrobiologia 525: 113–124. doi:10.1023/B:HYDR.0000038858.29164.31.

    Article  CAS  Google Scholar 

  • Gameiro, C., P. Cartaxana, and V. Brotas. 2007. Environmental drivers of phytoplankton distribution and composition in Tagus estuary, Portugal. Estuarine, Coastal and Shelf Science 75: 21–34. doi:10.1016/j.ecss.2007.05.014.

    Article  Google Scholar 

  • Grasshoff, K. 1976. Methods of seawater analysis. New York: Verlag Chemie.

    Google Scholar 

  • INAG database (SNIRH). 1995. Sistema nacional de informação de recursos hídricos. http://www.snirh.pt. Accessed 14 November 2007.

  • Irigoien, X., and J. Castel. 1997. Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France). Estuarine, Coastal and Shelf Science 44: 507–517. doi:10.1006/ecss.1996.0132.

    Article  CAS  Google Scholar 

  • Jesus, B., V. Brotas, L. Ribeiro, C.R. Mendes, P. Cartaxana, and D.M. Paterson. 2009. Adaptations of microphytobenthos assemblages to sediment type and tidal position. Continental Shelf Research. doi:10.1016/J.csr.2009.05.006.

    Google Scholar 

  • Kocum, E., G.J.C. Underwood, and D.V. Nedwell. 2002. Simultaneous measurements of phytoplanktonic primary production, nutrient and light availability along a turbid, eutrophic UK east coast estuary (the Colne estuary). Marine Ecology Progress Series 231: 1–12. doi:10.3354/meps231001.

    Article  Google Scholar 

  • Koroleff, F. 1969/70. Direct determination of ammonia in natural waters as indophenol blue. International Council for Exploration of the Sea (ICES) Comm. Meet. Pap. 1969/C:9 Interlab. Report 3:19-22

  • Kromkamp, J., and J. Peene. 1995. Possibility of net phytoplankton primary production in the turbid Schelde estuary (SW Netherlands). Marine Ecology Progress Series 121: 249–259. doi:10.3354/meps121249.

    Article  Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    CAS  Google Scholar 

  • Martins, M.M., and M.J.L. Duffner. 1982. Estudo ambiental do estuário do Tejo—estudo da qualidade da água—resultados referêntes às observações sinópticas em 1980. Comissão Nacional do ambiente/Tejo no. 14 Relatório 13.

  • Martins, M.M., J. Ferreira, T. Calvão, and H. Figueiredo. 1984. Nutrientes no estuário do Tejo-Comparação da situação em caudais médios e em cheia, com destaque para alterações na qualidade da água. I-Simposum Luso-Brasileiro de Engenharia sanitaria e ambiental.

  • Moita, T. 1982. Estudo ambiental do estuário do Tejo–estudo dos pigmentos (clorofila a e feopigmentos) colhidos no estuário do Tejo em 1980. Comissão Nacional do ambiente/Tejo no. 15 Relatório 14.

  • Moita, T., and M.G. Vilarinho. 1998. Checklist of phytoplankton species off Portugal: 70 years (1929–1998) of studies. Portugaliae Acta Biologica 18: 5–50.

    Google Scholar 

  • Monbet, Y. 1992. Control of phytoplankton biomass in estuaries: A comparitive analysis of microtidal and macrotidal estuaries. Estuaries 15: 563–571. doi:10.2307/1352398.

    Article  CAS  Google Scholar 

  • Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36. doi:10.1016/S0003-2670(00)88444-5.

    Article  CAS  Google Scholar 

  • National statistics institute database. 2005. The INE register. http://www.ine.pt. Accessed 04 Jun 2008.

  • Nedwell, D.B., L.F. Dong, A. Sage, and G.J.C. Underwood. 2002. Variations of the nutrients loads to the mainland UK estuaries: Correlation with catchment, urbanization and coastal eutrophication. Estuarine, Coastal and Shelf Science 54: 951–970. doi:10.1006/ecss.2001.0867.

    Article  CAS  Google Scholar 

  • Nielsen, S.L., K. Sand-Jensen, J. Borum, and O. Geertz-Hansen. 2002. Phytoplankton, nutrients, and transparency in Danish coastal waters. Estuaries 25: 930–937. doi:10.1007/BF02691341.

    Article  CAS  Google Scholar 

  • Nixon, S.V. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199–219.

    Google Scholar 

  • Nixon, S.W., J.R. Kelly, B.N. Furnas, C.A. Oviatt, and S.S. Hale. 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In Marine benthic dynamics, ed. K.R. Tenore and B.C. Coull, 219–242. Columbia: Univ. S. Carolina Press.

    Google Scholar 

  • Officer, C.B., and J.H. Ryther. 1980. The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series 3: 83–91.

    Article  CAS  Google Scholar 

  • Rabalais, N.N., and S.W. Nixon. 2002. Preface: Nutrient over-enrichment of the coastal zone. Estuaries 25: 639–639. doi:10.1007/BF02804896.

    Article  Google Scholar 

  • Richardson, K., and J.P. Heilmann. 1995. Primary production in the Kattegat: Past and present. Ophelia 41: 317–328.

    Google Scholar 

  • Richardson, K., and B.B. Jørgensen. 1996. Eutrophication: Definition, history and effects. In Eutrophication in marine coastal ecosystems, ed. B.B. Jørgensen and K. Richardson, 1–20. Washington DC: American Geophysical Union.

    Google Scholar 

  • Rodier, J. 1976. L’analyse de l’eau. Eaux naturelles, eaux résiduaires, eaux de mer. 5ème édition, Paris: Dunod.

  • Smayda, T.J. 2004. Eutrophycation and phytoplankton. In Drainage basin nutrient inputs and eutrophication: and integrated approach, eds. P. Wassmann and K. Olli, 89-98. E-book available at: http://www.ut.ee/˜olli/eutr/

  • Smith, V.H., G.D. Tilman, and J.C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196. doi:10.1016/S0269-7491(99)00091-3.

    Article  CAS  Google Scholar 

  • Sousa e Silva, E., E. Assis, and M.A. Sampayo. 1969. Primary productivity in the Tagus and Sado estuaries from May 1967 to May 1968. Notas e Estudos do Instituto de Biologia Marítima no. 37.

  • Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis, 2nd edition. Bulletin Fisheries research board of Canada 167: 1–311.

    Google Scholar 

  • Tinsley, J. 1950. The determination of organic carbon in solids by dichromate mixture. Transactions of the Fourth International Congress of Soil Science I: 161–164.

    Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen-Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vale, C., and B. Sündby. 1987. Suspended sediment fluctuations in the Tagus estuary on semi-diurnal and fortnightly time scales. Estuarine, Coastal and Shelf Science 25: 495–508. doi:10.1016/0272-7714(87)90110-7.

    Article  Google Scholar 

  • van Spaedonk, J.C.M., J.C. Kromkamp, and P.R.M. de Visscher. 1993. Primary production of phytoplankton in a turbid coastal plain estuary, The Westerschelde (The Netherlands). Netherlands Journal of Sea Research 31: 267–279. doi:10.1016/0077-7579(93)90027-P.

    Article  Google Scholar 

  • Wofsy, S. 1983. A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnology and Oceanography 28: 1144–1155.

    Article  Google Scholar 

  • Wood, P.C. 1986. An idealized system for the management of the estuary of the Tagus. In Estuarine processes: An application to the Tagus estuary. Proceedings of a UNESCO/IOC/CAN (DGQA) Workshop, Lisbon, 489-503.

Download references

Acknowledgements

The authors would like to thank T. Anselmo and R. Mendes for helping in both field and laboratory work, M.T. Cabrita for providing her unpublished data, and J.P. Granadeiro and M. Dias for the figure of the Tagus estuary map. This paper was improved by critical comments from M.T. Cabrita, P. Cartaxana, and B. Jesus. Financial support was provided by ValorSul SA and Fundação para a Ciência e a Tecnologia (FCT) by means of project INTAGUS (PDCT/MAR/58022/2004). C. Gameiro was funded by a PhD grant from FCT (POCI-2010/BD/13988/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Gameiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gameiro, C., Brotas, V. Patterns of Phytoplankton Variability in the Tagus Estuary (Portugal). Estuaries and Coasts 33, 311–323 (2010). https://doi.org/10.1007/s12237-009-9194-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-009-9194-4

Keywords

Navigation