Skip to main content
Log in

Short- and Long-Term Chlorophyll a Variability in the Shallow Microtidal Patos Lagoon Estuary, Southern Brazil

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In the shallow microtidal Patos Lagoon estuary, southern Brazil (32° 07′ S–52° 06′ W), chlorophyll a (Chl a) variability was studied at different time scales during the last 25 years (hourly–daily sampling in 1984/1985; weekly sampling in 1986 and from 1988 to 1990; monthly sampling from 1993 to 2008). Phytoplankton biomass variation seems to be most influenced by hydrology, which is primarily driven by meteorological factors like wind, rainfall, and evaporation. However, it was observed that the hydrological driving forces play different roles at different time scales. For instance, short-term Chl a variability is mainly controlled by winds, while long-term changes are related to the freshwater input by rainfall. Significant correlation was found between the total amount of rain in the year and the mean annual value of Chl a, though this relationship was linear until 1,500 mm of rain per year. After this threshold, mean annual Chl a values dropped significantly, probably due to a washout of the produced biomass from the estuary. Similarly, low rainfall levels and drought years lead to small phytoplankton biomass due to scarcity of nutrient, mainly silicate, or a possible inhibitory effect generated by high ammonium concentration. In this sense, large-scale Chl a variability would be related to the El Niño-Southern Oscillation climatic anomaly, which influences the rainfall levels in Southern Brazil, though sampling periodicity has also great influence on this relationship. No Chl a or nutrient enrichment was observed in the estuarine region along the last years, indicating that this estuary is not subject to an eutrophication process. In contrast, signals of an ongoing oligotrophication are observed, possibly a remote effect of the eutrophication in the Northern area of the lagoon where the phytoplankton nutrients uptake may act as a biological filter mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abreu, P.C. 1987. Variações temporais de biomassa fitoplanctônica (Clorofila a) e relação com fatores abióticos no canal de acesso ao estuário da lagoa dos Patos (RS—Brazil). M. Sc. Thesis. University of Rio Grande—FURG, RS, Brazil, pp. 107.

  • Abreu, P.C., C. Odebrecht, and A. González. 1994a. Particulate and dissolved phytoplankton production of the Patos Lagoon estuary, southern Brazil: comparison of methods and influencing factors. Journal of Plankton Research 16: 737–753.

    Article  Google Scholar 

  • Abreu, P.C., E. Granéli, C. Odebrecht, D. Kitzmann, L.A. Proença, and C. Resgalla Jr. 1994b. Effect of fish and mesozooplankton manipulation on phytoplankton community in the Patos Lagoon estuary, southern Brazil. Estuaries 17: 575–584.

    Article  Google Scholar 

  • Abreu, P.C., C. Hartmann, and C. Odebrecht. 1995. Nutrient rich salt-water and its influence on the phytoplankton of the Patos Lagoon estuary. Estuarine, Coastal and Shelf Science 40: 219–229.

    Article  CAS  Google Scholar 

  • Baumgarten, M.G., L.F. Niencheki, and K.N. Kuroshima. 1995. Qualidade das águas que margeiam o município do Rio Grande: Nutrientes e detergentes dissolvidos. Atlântica 17: 17–34.

    Google Scholar 

  • Babin, M. 2008. Phytoplankton fluorescence: theory, current literature and in situ measurement. In Real-time coastal observing systems for marine ecosystems dynamics and harmful algal blooms, ed. M. Babin, C.S. Roesler, and J.J. Cullen, 237–289. Paris: UNESCO.

    Google Scholar 

  • Bergesch, M. and C. Odebrecht. 1997. Análise do fitoplâncton, protozooplâncton e de alguns fatores abióticos no estuário da Lagoa dos Patos. Atlântica 19: 31–50.

    Google Scholar 

  • Bonilla, S., D. Conde, L. Aubriot, and M.C. Perez. 2005. Influence of hydrology on phytoplankton species composition and life strategies in a subtropical coastal lagoon periodically connected with the Atlantic Ocean. Estuaries 28: 884–895.

    Article  Google Scholar 

  • Carstensen, J., D.J. Conley, J.H. Andersen, and G. Ærtbjerg. 2006. Coastal eutrophication and trend reverse: a Danish case study. Limnology and Oceanography 51: 398–408. part 2.

    Google Scholar 

  • Ciotti, A.M., C. Odebrecht, G. Fillmann, and O.O. Möller Jr. 1995. Freshwater outflow and Subtropical Convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Continental Shelf Research 15: 1737–1756.

    Article  Google Scholar 

  • Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34: 127–168.

    Article  CAS  Google Scholar 

  • Cloern, J.E. and F.H. Nichols. 1985. Time scales and mechanisms of estuarine variability, a synthesis from studies of San Francisco Bay. Hydrobiologia 129: 229–237.

    Article  Google Scholar 

  • Cloern, J.E. and A.D. Jassby. 2008. Complex seasonal patterns of primary producers at the land–sea interface. Ecology Letters 11. doi:10.1111/j.1461-0248.2008.01244.x.

  • Collos, Y., B. Bec, C. Jauzein, E. Abadie, T. Laugier, J. Lautier, A. Pastoureaud, P. Souchu, and A. Vaquer. 2008. Oligotrophication and emergence of picocyanobacteria and toxic dinoflagellate in Thau lagoon, southern France. J Sea Res 61: 68–75. doi:10.1016/J.seares.2008.05.008.

    Article  Google Scholar 

  • Diaz, A.F., D.D. Studzinski, and C.R. Mechoso. 1998. Relationship between precipitation anomalies in Uruguay and Southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans. Journal of Climate 11: 251–271.

    Article  Google Scholar 

  • Dugdale, R.C., F.P. Wilkerson, V.E. Hogue, and A. Marchi. 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuarine, Coastal and Shelf Science 73: 17–29.

    Article  Google Scholar 

  • Emery, W.J. and R.E. Thomson. 2004. Data analysis methods in physical oceanography, 2nd ed, 533–539. New York: Elsevier.

    Google Scholar 

  • Fernandes, E.H.L., K.R. Dyer, O.O. Moller, and L.F.H. Niencheski. 2002. The Patos Lagoon hydrodynamics during an El Niño event (1998). Continental Shelf Research 22: 1699–1713.

    Article  Google Scholar 

  • Fernandes, E.H.L., K.R. Dyer, and O.O. Moller. 2005. Spatial gradients in the flows of Southern Patos Lagoon. Journal of Coastal Research 21: 759–769.

    Article  Google Scholar 

  • Fujita, C. and C. Odebrecht. 2007. Short term variability of chlorophyll a and phytoplankton composition in a shallow area of the Patos Lagoon estuary (southern Brazil). Atlantica 29: 93–106.

    Google Scholar 

  • Garcia, C. 1997. Coastal Plain and Patos Lagoon—hydrographic characteristics. In Subtropical convergence environment. The coast and sea in the Southwestern Atlantic, ed. U. Seeliger, C. Odebrecht, and J.P. Castello, 18–20. New York: Springer.

    Google Scholar 

  • Garcia, C. and V.M. Garcia. 2008. Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region. Continental Shelf Research 28: 1568–1578.

    Article  Google Scholar 

  • Gayoso, A.M. 1998. Long-term phytoplankton studies in the Bahía Blanca estuary Argentina. ICES Journal of Marine Science 55: 655–660.

    Article  Google Scholar 

  • Gayoso, A.M. 1999. Seasonal succession patterns of phytoplankton in the Bahía Blanca estuary (Argentina). Botanica Marina 42: 367–375.

    Article  Google Scholar 

  • Grange, N., A.K. Whitfield, C.J. DeVilliers, and B.B. Allanson Jr. 2000. The response of two South African east coast estuaries to altered river flow regimes. Aquatic Conservation: Marine and Freshwater Ecosystems 10: 155–177.

    Article  Google Scholar 

  • Grim, A.M., S. Ferraz, and J. Gomes. 1998. Precipitation anomalies in Southern Brazil associated with El Niño and La Niña events. Journal of Climate 11: 2863–2880.

    Article  Google Scholar 

  • Grim, A.M., V.R. Barros, and M. Doyle. 2000. Climate variability in Southern South America associated with El Niño and La Niña events. Journal of Climate 13: 35–58.

    Article  Google Scholar 

  • Harding Jr., L.W. and E.S. Perry. 1997. Long-term increase on phytoplankton biomass in Chesapeake Bay, 1959–1994. Marine Ecology Progress Series 157: 39–52.

    Article  Google Scholar 

  • IBGE—Brazilian Institute of Geography and Statistics. 2009. Population counting 1996 and 2007. Accessed at www.ibge.gov.br

  • Jassby, A.D., J.E. Cloern, and B.E. Cole. 2002. Annual primary production: patterns and mechanisms of changes of a nutrient-rich tidal ecosystem. Limnology and Oceanography 47: 698–712.

    Google Scholar 

  • Jorge, I.E.W. and M.G. Baumgarten. 2006. Ações de educação ambiental numa comunidade escolar que convive coma a falta de saneamento básico. Cadernos de Ecologia Aquática 1: 31–44. www.cadernos.ecologia.furg.br/artigos/.

    Google Scholar 

  • Klein, A.H.F. 1997. Regional climate. In Subtropical convergence environment. The coast and sea in the Southwestern Atlantic, ed. U. Seeliger, C. Odebrecht, and J.P. Castello, 5–7. New York: Springer.

    Google Scholar 

  • Lehman, P.W. 2000. The influence of climate on phytoplankton community biomass in San Francisco Bay estuary. Limnology and Oceanography 45: 580–590.

    CAS  Google Scholar 

  • Lucas, L.V., J. Thompson, and L. Brown. 2009. Why are diverse relationships observed between phytoplankton biomass and transport time? Limnology and Oceanography 54: 381–390.

    Google Scholar 

  • Litaker, W., C.S. Duke, B.E. Kenney, and J. Ramus. 1993. Short-term environmental variability and phytoplankton abundance in a shallow tidal estuary. II. Spring and fall. Marine Ecology Progress Series 94: 141–154.

    Article  Google Scholar 

  • Mallin, M.A., H.W. Paerl, J. Rudeck, and P.W. Bates. 1993. Regulation of estuarine primary production by watershed rainfall and river flow. Marine Ecology Progress Series 93: 199–203.

    Article  Google Scholar 

  • McComb, A.J. and R.J. Lukatelich. 1995. The Peel-Harvey estuarine system, Western Australia. In Eutrophic shallow estuaries and lagoons, ed. A.J. McComb, 5–17. Boca Raton: CRC.

    Google Scholar 

  • Möller Jr., O.O., J.A. Lorenzzetti, J.L. Stech, and M.A. Mata. 1996. The Patos Lagoon summertime circulation and dynamics. Contin. Shelf Sci. 16: 335–351.

    Article  Google Scholar 

  • Möller Jr., O.O., P. Gastaing, J.-C. Salomon, and P. Lazure. 2001. The influence of local and non-local forcing effects on the subtidal circulation of the Patos Lagoon. Estuaries 24: 297–3111.

    Article  Google Scholar 

  • Niencheski, L.F. and H.L. Windom. 1994. Nutrient flux and budget in Patos Lagoon estuary. Science of the Total Environment 149: 53–60.

    Article  CAS  Google Scholar 

  • NOAA—National Oceanic &Atmospheric Administration. 2009. Table of most recent Southern Oscillation values (from the Climate Prediction Center). Accessed at ftp://ftp.cpcncep.noaa.gov/wd52dg/data.indices.soi.

  • Odebrecht, C. and P.C. Abreu. 1997. Environment and Biota of the Patos Lagoon estuary: Microalgae. In Subtropical Convergence Environments: The coast and sea in the Southwestern Atlantic, ed. U. Seeliger, C. Odebrecht, and J.P. Castello, 34–37. Berlin: Springer.

    Google Scholar 

  • Odebrecht, C., P.C. Abreu, O.O. Moeler Jr., L.F. Niencheski, L.A. Proença, and L.C. Torgan. 2005. Drought effects on pelagic properties in the shallow and turbid Patos Lagoon, Brazil. Estuaries 28: 675–685.

    Article  Google Scholar 

  • Paerl, H.W., L. Valdes, B. Peierls, J. Adolf, and L. harding Jr. 2006. Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnology and Oceanography 51(part 2): 448–462.

    CAS  Google Scholar 

  • Proença, L.A., L.L. Hama, and C. Odebrecht. 1994. Contribution of microalgae to particulate organic carbon in the shallow area of Lagoa dos Patos Estuary, Southern Brazil. Atlântica, Rio Grande 16: 191–199.

    Google Scholar 

  • Rydberg, L., G. AErtebjerg, and L. Edler. 2006. Fifty years of primary production measurements in the Baltic entrance region, trends and variability in relation to land-based input of nutrients. Journal of Sea Research 56: 1–16.

    Article  CAS  Google Scholar 

  • Schuchardt, B. and M. Schirmer. 1991. Phytoplankton maxima in the tidal freshwater reaches of two coastal plain estuaries. Estuarine, Coastal and Shelf Science 32: 187–206.

    Article  Google Scholar 

  • Seeliger, U., C. Odebrecht, and J.P. Castello (Eds.). 1997. Subtropical convergence environments. The coast and sea in the Southwestern Atlantic. Berlin: Springer, 308 pp.

  • Sokal, R.R. and F.J. Rohlf. 1969. Biometry. The principles and practice of statistics in biological research. San Francisco: W. H. Freeman & Co.

    Google Scholar 

  • Smetacek, V. and J.E. Cloern. 2007. On phytoplankton trends. Science 319: 1346–1348.

    Article  Google Scholar 

  • Smith, V.H. 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography 51(part 2): 377–384.

    Article  CAS  Google Scholar 

  • Spiegel, M.R. 1977. Manual of mathematical formulas and tables. McGraw-Hill: Shaum Collection.

    Google Scholar 

  • Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Canada. Ottawa: Fish. Res. Bd.

    Google Scholar 

  • Thompson, P.R., P.I. Bohnan, and K.M. Swading. 2008. Phytoplankton blooms in the Huon estuary, Tasmania: top down or bottom up control. Journal of Plankton Research 30: 735–753.

    Article  CAS  Google Scholar 

  • UNESCO. 1983. Chemical methods for use in marine environmental monitoring. Intergovernmental Oceanographic Commission, Paris, Manual and Guides 12, 53.

  • Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnology and Oceanography 39(8): 1985–1992.

    Article  CAS  Google Scholar 

  • Yamamoto, T. 2003. The Seto Inland Sea—eutrophic or oligotrophic? Marine Pollution Bulletin 47: 37–42.

    Article  CAS  Google Scholar 

  • Yin, K., J. Zhang, P.-Y. Qian, W. Jian, L. Huang, J. Chen, and C. Wu. 2004. Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer. Continental Shelf Research 24: 1909–1923.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the criticisms and suggestions of two anonymous Reviewers. We are grateful to Valnei Rodrigues for helping in the field work. This study is part of the Brazilian Long Term Ecological Program (PELD), financed by CNPq, Brazilian Ministry of Sciences. P. C. Abreu, L.A. Proença, C. Garcia, and C. Odebrecht are Research fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo C. Abreu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu, P.C., Bergesch, M., Proença, L.A. et al. Short- and Long-Term Chlorophyll a Variability in the Shallow Microtidal Patos Lagoon Estuary, Southern Brazil. Estuaries and Coasts 33, 554–569 (2010). https://doi.org/10.1007/s12237-009-9181-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-009-9181-9

Keywords

Navigation