Skip to main content
Log in

The Intertidal Burrowing Crab Neohelice (=Chasmagnathus) granulata Positively Affects Foraging of Rodents in South Western Atlantic Salt Marshes

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The role of positive and indirect interactions is often crucial in communities with intense abiotic stress such as salt marshes. The burrowing crab, Neohelice (=Chasmagnathus) granulata, is the dominant benthic macroinvertebrate of southwest Atlantic marshes (southern Brazil to Northern Argentinean Patagonia), having strong direct and indirect effects on marsh soil and, in consequence, on marsh vegetation and primary consumers. In this work, we investigate if this crab indirectly modifies habitat use by the granivorous rodents, Akodon azarae and Oligoryzomys flavescens, by increasing nutrient availability and thus enhancing seed production by the marsh plant Spartina densiflora. The study was conducted at the Mar Chiquita Coastal Lagoon, Argentina (37°32′ S). Rodent frequencies in S. densiflora were positively correlated with crab densities throughout the low and middle marsh. Additionally, the highest quality of S. densiflora and inflorescence density was recorded at the highest crab densities. Experimental manipulation of crab densities shows that N. granulata indirectly enhances the performance of S. densiflora (e.g., decreased fiber content and C/N ratios) and increases density of seeds. Moreover, N. granulata also facilitates S. densiflora seed availability to rodents by concentrating them in sediment mound at their burrows entrances. Experimental rodent exclusions showed that rodent species used S. densiflora seeds, a variable positively related to crab burrow density. Thus, our results show that N. granulata drives the granivorous rodent distribution and the intensity of seeds–rodent interaction trough facilitative and indirect interactions in marsh community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberti, J., M. Escapa, P. Daleo, O.O. Iribarne, B. Silliman, and M. Bertness. 2007. Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Marine Ecology Progress Series 349: 235–243. doi:10.3354/meps07089.

    Article  Google Scholar 

  • Bertness, M.D. 1985. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66: 1042–1055. doi:10.2307/1940564.

    Article  Google Scholar 

  • Bertness, M.D., and R.M. Callaway. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9: 191–193. doi:10.1016/0169-5347(94)90088-4.

    Article  Google Scholar 

  • Bertness, M.D., and S.D. Hacker. 1994. Physical stress and positive associations among marsh plants. American Naturalist 144: 363–372. doi:10.1086/285681.

    Article  Google Scholar 

  • Bertness, M.D., and P.J. Ewanchuk. 2002. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia 132: 392–401. doi:10.1007/s00442-002-0972-y.

    Article  Google Scholar 

  • Bilenca, D. N. 1993. Caracterización de los nichos ecológicos y organización de las comunidades de roedores cricétidos en la Región Pampeana. Doctoral Thesis, Universidad de Buenos Aires. 179 pp.

  • Bilenca, N., F.O. Kravetz, and G.A. Zuleta. 1992. Food habits of Akodon azarae and Calomys laucha (Cricetidae, Rodentia) in agroecosystems of central Argentina. Mammalia 56: 371–383.

    Article  Google Scholar 

  • Bonaventura, S.M., V. Pancotto, R.L. Vicari, N. Madanes, and M.I. Bellocq. 2003. Demography and microhabitat use of the wild quinea pig (Cavia aperea) in freshwater Spartina densiflora marshes in Argentina. Acta Zoologica Sinica 49: 20–31.

    Google Scholar 

  • Bortolus, A., and O.O. Iribarne. 1999. Effect of the Southwestern Atlantic burrowing crab Chasmagnathus granulata on a Spartina saltmarsh. Marine Ecology Progress Series 178: 79–88. doi:10.3354/meps178079.

    Article  Google Scholar 

  • Bortolus, A., P. Laterra, and O.O. Iribarne. 2004. Crab-mediated phenotypic changes in Spartina densiflora Brong. Estuarine, Coastal and Shelf Science 59: 97–107. doi:10.1016/j.ecss.2003.06.005.

    Article  Google Scholar 

  • Botto, F., I. Valiela, O.O. Iribarne, P. Martinetto, and J. Alberti. 2005. Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Marine Ecology Progress Series 293: 155–164. doi:10.3354/meps293155.

    Article  Google Scholar 

  • Botto, F., O.O. Iribarne, J. Gutierrez, J. Bava, A. Gagliardini, and I. Valiela. 2006. Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus. Marine Ecology Progress Series 312: 201–210. doi:10.3354/meps312201.

    Article  Google Scholar 

  • Boyer, K.E., and J.B. Zedler. 1999. Nitrogen addition could shift plant community composition in a restored California salt marsh. Restoration Ecology 7: 74–85. doi:10.1046/j.1526-100X.1999.07109.x.

    Article  Google Scholar 

  • Bruno, J.F. 2000. Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology 81: 1179–1192.

    Google Scholar 

  • Bruno, J.F., J.J. Stachowicz, and M.D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18: 119–125. doi:10.1016/S0169-5347(02)00045-9.

    Article  Google Scholar 

  • Callaway, R.M., R.W. Brooker, P. Choler, Z. Kikvidze, C.J. Lortie, R. Michalet, L. Paolini, F.I. Pugnaire, B. Newingham, E.T. Aschehoug, C. Armas, D. Kikodze, and B.J. Cook. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844–848. doi:10.1038/nature00812.

    Article  CAS  Google Scholar 

  • Canepuccia, A.D., A.A. Farias, A.H. Escalante, O. Iribarne, A. Novaro, and J.P. Isacch. 2008. Differential responses of marsh predators to rainfall-induced habitat loss and subsequent variations in prey availability. Canadian Journal of Zoology 86:407–418.

    Google Scholar 

  • Cardoni, D.A., J.P. Isacch, and O.O. Iribarne. 2007. Indirect effects of the intertidal burrowing crab Chasmagnathus granulatus in the habitat use of Argentina’s south West Atlantic saltmarsh birds. Estuaries and Coasts 30: 382–389.

    Article  Google Scholar 

  • Chapin, F.S. III. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260.

    Article  CAS  Google Scholar 

  • Dalby, P.L. 1975. Biology of Pampa rodents. Balcarce Area, Argentina. Publications of the Museum, Michigan State University. Biological Series 5: 149–272.

    Google Scholar 

  • Daleo, P., E. Fanjul, A. Mendez Casariego, B.R. Silliman, M.D. Bertness, and O. Iribarne. 2007. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters 10: 902–908. doi:10.1111/j.1461-0248.2007.01082.x.

    Article  Google Scholar 

  • Fanjul, M.E., M.A. Grela, and O.O. Iribarne. 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Marine Ecology Progress Series 341: 177–190. doi:10.3354/meps341177.

    Article  CAS  Google Scholar 

  • Fanjul, E., A.D. Canepuccia, M.A. Grela, and O.O. Iribarne. 2008. The Southwest Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads of phreatic waters entering coastal area. Estuarine, Coastal and Shelf Science. 79: 300–306. 10.1016/j.ecss.2008.04.005

    Google Scholar 

  • Fretwell, D.S., and H.L. Lucas. 1970. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica 19: 16–36. doi:10.1007/BF01601953.

    Article  Google Scholar 

  • Greenberg, R., J.E. Maldonado, S. Droege, and M.V. Mcdonald. 2006a. Tidal marshes: A global perspective on the evolution and eonservation of their terrestrial vertebrates. Bio Science 56: 675–685. doi:10.1641/0006-3568(2006)56[675:TMAGPO]2.0.CO;2.

    Google Scholar 

  • Greenberg, R., J.E. Maldonado, S. Droege, and M.V. Mcdonald. 2006b. Terrestrial vertebrates of tidal marshes: evolution, ecology, and conservationCamarillo, CA: Cooper Ornithological Society.

  • Hacker, S.D., and S.D. Gaines. 1997. Some implications of direct positive interactions for community species. Ecology 78: 1990–2003.

    Google Scholar 

  • Harding, E.K. 2002. Modeling the influence of seasonal inter-habitat movements by an ecotone rodent. Biological Conservation 104: 227–237. doi:10.1016/S0006-3207(01)00169-0.

    Article  Google Scholar 

  • Hastings, A., J.E. Byers, J.A. Crooks, K. Cuddington, C.G. Jones, J.G. Lambrinos, T.S. Talley, and W.G. Wilson. 2007. Ecosystem engineers in space and time. Ecology Letters 10: 153–164. doi:10.1111/j.1461-0248.2006.00997.x.

    Article  Google Scholar 

  • Hodara, K., M. Busch, M.J. Kittlein, and F.O. Kravetz. 2000. Density-dependent habitat selection between maize cropfields and their borders in two rodent species (Akodon azarae and Calomys laucha) of Pampean agroecosystems. Evolutionary Ecology 14: 571–593. doi:10.1023/A:1010823128530.

    Article  Google Scholar 

  • Hubbard, J.C.E. 1970. Effects of cutting and seed production in Spartina anglica. The Journal of Ecology 58: 329–334. doi:10.2307/2258274.

    Article  Google Scholar 

  • Iribarne, O.O. 2001. Reserva de Biosfera Mar Chiquita: Características físicas, biológicas y ecológicas. Mar del Plata, Argentina: Editorial Martin.

    Google Scholar 

  • Iribarne, O.O., A. Bortolus, and F. Botto. 1997. Between-habitats differences in burrow characteristics and trophic modes in the south western Atlantic burrowing crab Chasmagnathus granulata. Marine Ecology Progress Series 155: 137–145. doi:10.3354/meps155137.

    Article  Google Scholar 

  • Isacch, J.P., C.S.B. Costa, L. Rodrıguez-Gallego, D. Conde, M. Escapa, D.A. Gagliardini, and O.O. Iribarne. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography 33: 888–900. doi:10.1111/j.1365-2699.2006.01461.x.

    Article  Google Scholar 

  • Johnson, C.R., B.A. Reiling, P. Mislevy, and M.B. Hall. 2001. Effects of nitrogen fertilization and harvest date on yield, digestibility, fiber, and protein fractions of tropical grasses. Journal of Animal Science 79: 2439–2448.

    CAS  Google Scholar 

  • Jones, C.G., J. Lawton, and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos 69: 373–386. doi:10.2307/3545850.

    Article  Google Scholar 

  • Jones, C.G., J. Lawton, and M. Shachak. 1997. Positive and negative effects of organisms as physical engineers. Ecology 78: 1946–1957.

    Google Scholar 

  • Kuijper, D.P.J., and J.P. Bakker. 2005. Top-down control of small herbivores on salt-marsh vegetation along a productivity gradient. Ecology 86: 914–923. doi:10.1890/04-0693.

    Article  Google Scholar 

  • Lanfredi, N.W., C.F. Balestrini, C.A. Mazio, and S.A. Schmidt. 1987. Tidal Sandbanks in Mar Chiquita Coastal Lagoon, Argentina. Journal of Coastal Research 3: 515–520.

    Google Scholar 

  • Lee, S.Y. 1998. Ecological role of grapsid crabs in mangrove ecosystems: a review. Marine and Freshwater Research 49: 335–343. doi:10.1071/MF97179.

    Article  Google Scholar 

  • MacNab, B.K. 2002. The physiological ecology of vertebrates: A view from energetics. Ithaca, New York, USA: Cornell university Press.

    Google Scholar 

  • Magnione, A.M., and F. Bozinovic. 2003. Ecología nutricional y estrategias de digestión: Compromisos entre obtención de energía y eliminación de toxinas. In Fisiología ecológica y evolutiva, teoría y casos de estudios en animales, ed. F. Bozinovic, 125–150. Santiago, Chile: Ediciones Universidad Católica de Chile.

    Google Scholar 

  • Mattson, W.J. Jr. 1980. Herbivory in Relation to Plant Nitrogen Content. Annual Review of Ecology and Systematics 11: 119–161. doi:10.1146/annurev.es.11.110180.001003.

    Article  Google Scholar 

  • Montague, C.L. 1982. The influence of fiddler crab burrows and burrowing on metabolic process in salt marsh sediments. In Estuarine comparisons, ed. V. S. Kennedy, 283–301. NY, USA: Academic.

    Google Scholar 

  • Moon, D.C., and P. Stiling. 2000. Relative importance of abiotically induced direct and indirect effects on a salt marsh herbivore. Ecology 81: 470–481.

    Google Scholar 

  • Moon, D.C., and P. Stiling. 2002. The effects of salinity and nutrients on a tritrophic salt marsh system. Ecology 83: 2465–2476.

    Google Scholar 

  • Moon, D.C., and P. Stiling. 2005. Effects of nutrients and parasitism on the density of a salt marsh planthopper suppressed by withintrophic- level interactions. Ecological Entomology 30: 642–649. doi:10.1111/j.0307-6946.2005.00733.x.

    Article  Google Scholar 

  • Mooney, H.A. 1972. The carbon balance of plant. Annual Review of Ecology and Systematics 3: 315–346. doi:10.1146/annurev.es.03.110172.001531.

    Article  CAS  Google Scholar 

  • Provensal, M.C., J.W. Priotto, A. Steinmann, and J.J. Polop. 1995. Analysis of trap association among Argentina’s wild cricetid species. Mastozoologia Neotropical 2: 15–21.

    Google Scholar 

  • Pugnaire, F.I., and M.T. Luque. 2001. Changes in plant interactions along a gradient of environmental stress. Oikos 93: 42–49. doi:10.1034/j.1600-0706.2001.930104.x.

    Article  Google Scholar 

  • Reig, O.A. 1964. Roedores y marsupiales del partido de General Pueyrredón y regiones adyacentes (provincia de Buenos Aires, Argentina). Publicaciones del Museo Municipal de Ciencias Naturales de Mar del Plata 6: 203–224.

    Google Scholar 

  • Reig, O.A. 1965. Datos sobre la comunidad de pequeños mamíferos de la región costera del partido de General Pueyrredón y de los partidos limítrofes (prov. de Buenos Aires, Argentina). Physis 69: 205–211.

    Google Scholar 

  • Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225. doi:10.2307/2409177.

    Article  Google Scholar 

  • Shumway, S.W. 2000. Facilitative effects of a sand dune shrub on species growing beneath the shrub canopy. Oecologia 124: 138–148. doi:10.1007/s004420050033.

    Article  Google Scholar 

  • Shumway, S.W., and M.D. Bertness. 1992. Salt stress limitation of seedling recruitment in a salt marsh plant community. Oecologia 92: 490–497. doi:10.1007/BF00317840.

    Article  Google Scholar 

  • Spivak, E., K. Anger, T. Luppi, C. Bas, and D. Ismael. 1994. Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina). Helgolander Meeresuntersuchungen 48: 59–78. doi:10.1007/BF02366202.

    Article  Google Scholar 

  • Stachowicz, J.J. 2001. Mutualism, facilitation and the structure of ecological communities. Bioscience 51: 235–246. doi:10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2.

    Article  Google Scholar 

  • Stahl, J., A.J. Van Der Graaf, R.H. Drent, and J.P. Bakker. 2006. Subtle interplay of competition and facilitation among small herbivores in coastal grasslands. Functional Ecology 20: 908–915. doi:10.1111/j.1365-2435.2006.01169.x.

    Article  Google Scholar 

  • Steidl, R.J., J.P. Hayes, and E. Schauber. 1997. Statistical power analysis in wildlife research. Journal of Wildlife Management 61: 270–279. doi:10.2307/3802582.

    Article  Google Scholar 

  • Tewksbury, J.J., and J.D. Lloyd. 2001. Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127: 425–434. doi:10.1007/s004420000614.

    Article  Google Scholar 

  • Torres-Contreras, H., and F. Bozinovic. 1997. Food selection in an herbivorous rodent: balancing nutrition with thermoregulation. Ecology 78: 2230–2237.

    Article  Google Scholar 

  • Van Soest, P.J., J.B. Robertson, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. Journal of Dairy Science 74: 3583–3597.

    Article  Google Scholar 

  • Vogel, K.P., J.F. Pedersen, S.D. Masterson, and J.J. Toy. 1999. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Science 39: 276–279.

    Google Scholar 

  • Zar, J.H. 1999. Biostatistical analysis, Fourth Edition. Upper Saddle River, NJ: Prentice-Hall, Inc.

    Google Scholar 

Download references

Acknowledgments

We would like to thank to L. Biondi, A. Baladron, G. Sanahuja, and J. Pascual for their field assistance, and G. Alvarez for laboratory assistance. We thank two anonymous reviewers for their comments, which greatly improved the manuscript. This project was supported by Universidad Nacional de Mar del Plata, Fundación Antorchas (A-13900-13), ANPCyT (PICT 13527), CONICET (PIP 5669), Agencia Nacional de Promoción Científica y Tecnológica (PICT No. 1-13527) all granted to O. O. Iribarne. A. D. Canepuccia, M. S. Fanjul, and M. E. Fanjul were supported by fellowships from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Alejandro D. Canepuccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canepuccia, A.D., Fanjul, M.S., Fanjul, E. et al. The Intertidal Burrowing Crab Neohelice (=Chasmagnathus) granulata Positively Affects Foraging of Rodents in South Western Atlantic Salt Marshes. Estuaries and Coasts 31, 920–930 (2008). https://doi.org/10.1007/s12237-008-9076-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-008-9076-1

Keywords

Navigation