Skip to main content

Advertisement

Log in

Increased Terrestrial to Ocean Sediment and Carbon Fluxes in the Northern Chesapeake Bay Associated With Twentieth Century Land Alteration

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24 ± 0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138–269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barros, A.P., and S.J. Gordon. 2002. Assessing the linkages among climate variability, land-use change, and the sedimentary regime of the Upper Chesapeake Bay. Proceeding Coastal Environment, 183–192. Southampton: WIT Press.

  • Bratton, J.F., S.M. Colman, and R.R. Seal. 2003. Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: Human impacts in context. Geochimica et Cosmochimica Acta 67: 3385–3402.

    Article  CAS  Google Scholar 

  • Brown, L., M.J. Pavich, R.E. Hickman, J. Klein, and R. Middleton. 1988. Erosion of the eastern Untied States observed with 10Be. Earth Surface Processes and Landforms 13: 441–457.

    Article  CAS  Google Scholar 

  • Brugger, R.J. 1988. Maryland: a middle temperament. Baltimore, MD, USA: Johns Hopkins University Press.

    Google Scholar 

  • Brush, G. 1984. Patterns of recent sediment accumulation in Chesapeake Bay (Virginia-Maryland, U.S.A.) tributaries. Chemical Geology 44: 227–242.

    Article  CAS  Google Scholar 

  • Brush, G.S. 1989. Rates and patterns of estuarine sedimentation. Limnology and Oceanography 34: 1235–1246.

    Google Scholar 

  • Chapelle, S.E.G., J.H. Baker, D.R. Esslinger, W.H. Ridgeway, J.B. Russo, C.B. Schulz, and G.A. Stiverson. 1986. Maryland: A history of its people. Baltimore, MD, USA: Johns Hopkins University Press.

    Google Scholar 

  • Colman, S.M., and J.F. Bratton. 2003. Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay. Geology 31: 71–74.

    Article  CAS  Google Scholar 

  • Colman, S.M., P.C. Baucom, J.F. Bratton, T.M. Cronin, J.P. McGeehin, D. Willard, A.R. Zimmerman, and P.R. Vogt. 2002. Radiocarbon dating, chronologic framework, and changes in accumulation rates of Holocene estuarine sediments from Chesapeake Bay. Quaternary Research 57: 58–70.

    Article  CAS  Google Scholar 

  • Cooper, S.R., and G.S. Brush. 1991. Long-term history of Chesapeake Bay anoxia. Science 254: 992–996.

    Article  CAS  Google Scholar 

  • Cronin, W.B. 1971. Volumetric, areal, and tidal statistics of the Chesapeake Bay estuary and its tributaries. Chesapeake Bay Institute Special Report 20. Baltimore, MD, USA: Johns Hopkins University Press.

    Google Scholar 

  • Cronin, T.M., G.S. Dwyer, T. Kamiya, S. Schwede, and D.A. Willard. 2003. Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay. Global and Planetary Change 36: 17–29.

    Article  Google Scholar 

  • Cronin, T., D. Willard, A. Karlsen, S. Ishman, S. Verardo, J. McGeehin, R. Kerhin, C. Holmes, S. Colman, and A. Zimmerman. 2000. Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments. Geology 28: 3–6.

    Article  Google Scholar 

  • Cronin, T. M., R. Thunell, G. S. Dwyer, C. Saenger, M. E. Mann, C. Vann, and R. R. Seal. 2005. Multiproxy evidence of Holocene climate variability from estuarine sediments, eastern North America. Paleoceanography 20: PA4006, DOI 10.1029/2005PA001145.

  • Darrell, L.C., B.F. Majedi, J.S. Lizarraga, and J.D. Blomquist. 1999. Nutrient and suspended-sediment concentrations, trends, loads, and yields from the nontidal part of the Susquehanna, Potomac, Patuxent, and Choptank River, 1985–96, USGS Report 98-4177.

  • Defries, R. 1986. Effects of land-use history on sedimentation in the Potomac Estuary, Maryland, USGS Water Supply Paper 2234-K.

  • Dettman, E.H. 2001. Effect of water residence time on annual export and denitrification in estuaries: A model analysis. Estuaries 24: 481–490.

    Article  Google Scholar 

  • Hobbs, C.H., J.P. Halka, R.T. Kerhin, and M.J. Carron. 1992. Chesapeake Bay sediment budget. Journal of Coastal Research 8: 292–300.

    Google Scholar 

  • Houghton, R.A., J.L. Hackler, and K.T. Lawrence. 1999. The US carbon budget: Contributions from land-use change. Science 285: 574–578.

    Article  CAS  Google Scholar 

  • Howarth, R.W., J.R. Fruci, and D. Sherman. 1991. Inputs of sediment and carbon to an estuarine ecosystem - Influence of land-use. Ecological Applications 1: 27–39.

    Article  Google Scholar 

  • Ittekkot, V., and R.W.P.M. Laane. 1991. Fate of riverine particulate organic matter. In Biogeochemistry of Major World Rivers: SCOPE 42, eds. E.T. Degens, 233–244. S.K. Kempe, and J.E. Richey. Chichester, UK: Wiley.

    Google Scholar 

  • Karlsen, A.W., T.M. Cronin, S.E. Ishman, D.A. Willard, C.W. Holmes, M. Marot, and R. Kerhin. 2000. Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores. Estuaries 23: 488–508.

    Article  Google Scholar 

  • Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology-Progress Series 303: 1–29.

    Google Scholar 

  • Kerhin, R., J.P. Halka, D.V. Wells, E.L. Hennessee, P.J. Blakeslee, N. Zoltan, and R.H. Cuthertson. 1988. The surficial sediments of Chesapeake Bay, Maryland: Physical characteristics and sediment budget. Investigative report no. 48. Baltimore, MD, USA: Maryland Geological Survey.

    Google Scholar 

  • Lal, R. 2003. Soil erosion and the global carbon budget. Environment International 29: 437–450.

    Article  CAS  Google Scholar 

  • Langland, M.J. 1998. Changes in sediment and nutrient storage in three reservoirs in the lower Susquehanna River basin and implications for the Chesapeake Bay. Reston, VA, USA: US Geological Survey.

    Google Scholar 

  • Langland M.J. and T.M. Cronin. 2003. A summary report of sediment processes in Chesapeake Bay and watershed, USGS Water-Resources Investigations Report 03-4123.

  • Linker, L., G.W. Shenk, R.L. Dennis, and J.S. Sweeny. 2000. Cross-media models of the Chesapeake Bay watershed and airshed. Water Quality and Ecosystem Modeling 1: 91–122.

    Article  Google Scholar 

  • McKee, B.A. 2003. The transport, transformation and fate of carbon in river-dominated ocean margins: Report of the RiOMar community workshop 1–3. New Orleans, USA: Tulane University.

    Google Scholar 

  • Meade, R.H. 1988. Movement and storage of sediment in river systems. In Physical and Chemical Weathering in Geochemical Cycles, eds. Lerman, A. and M. Meybeck, 165–179. Dordrecht: Kluwer.

    Google Scholar 

  • Meade, R.H., T.R. Yuzyk, and T.J. Day. 1990. Movement and storage of sediment in rivers of the United States and Canada. In Geology of North America, Geological Society of America, eds. M.G. Wolman, and H.C. Riggs, 255–280. Colorado, USA: Boulder.

    Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science 282: 401–450.

    CAS  Google Scholar 

  • Meybeck, M., and C. Vörösmarty. 2005. Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene. Comptes Rendus Geoscience 337: 107–123.

    Article  CAS  Google Scholar 

  • Miller, J.R., and G.L. Russell. 1992. The impact of global warming on river runoff. Journal of Geophysical Research-Atmospheres 97: 2757–2764.

    Google Scholar 

  • Milliman, J.D., and J.P.M. Syvitski. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology 100: 525–544.

    Article  Google Scholar 

  • Pritchard, D.W. 1967. Observations of circulation in coastal plain estuaries. In Estuaries, ed. G. Lauff, 37–44. Washington, DC, USA: American Association for the Advancement of Science.

    Google Scholar 

  • Raymond, P.A., and J.E. Bauer. 2001. DOC cycling in a temperate estuary: A mass balance approach using natural 14C and d13C isotopes. Limnology and Oceanography 46: 655–667.

    CAS  Google Scholar 

  • Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCooland, and D.C. Yoder. 1997. Predicting erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). In Handbook 703. Tucson, AR, USA: US Department of Agriculture.

    Google Scholar 

  • Renwick, W.H., K.J. Carlson, and J.K. Hayes-Bohanan. 2005. Trends in recent reservoir sedimentation rates in Southwestern Ohio. Journal of Soil and Water Conservation 60: 72–79.

    Google Scholar 

  • Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono, and A.F. Rios. 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371.

    Article  CAS  Google Scholar 

  • Saenger, C., T. Cronin, R. Thunell, and C. Vann. 2006. Modelling river discharge and precipitation from estuarine salinity in the northern Chesapeake Bay: application to Holocene palaeoclimate. Holocene 16: 467–477.

    Article  Google Scholar 

  • Sarmiento, J.L., and E.T. Sundquist. 1992. Revised budget for the oceanic uptake of anthropogenic carbon-dioxide. Nature 356: 589–593.

    Article  CAS  Google Scholar 

  • Schlesinger, W.H., and J.M. Melack. 1981. Transport of organic carbon in the world’s rivers. Tellus 33: 172–187.

    Article  CAS  Google Scholar 

  • Schubel, J.R., and D.W. Pritchard. 1986. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River. Estuaries 9: 236–249.

    Article  CAS  Google Scholar 

  • Siegenthaler, U., and J.L. Sarmiento. 1993. Atmospheric carbon-dioxide and the ocean. Nature 365: 119–125.

    Article  CAS  Google Scholar 

  • Stallard, R.F. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12: 231–257.

    Article  CAS  Google Scholar 

  • Syvitski, J.P.M. 2003. Supply and flux of sediment along hydrological pathways: research for the 21st century. Global and Planetary Change 39: 1–11.

    Article  Google Scholar 

  • Syvitski, J.P.M., C.J. Vörösmarty, A.J. Kettner, and P. Green. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308: 376–380.

    Article  CAS  Google Scholar 

  • Trimble, S.W. 1999. Decreased rates of alluvial sediment storage in the Coon Creek Basin, Wisconsin, 1975–93. Science 285: 1244–1246.

    Article  CAS  Google Scholar 

  • Walling, D.E. 1983. The sediment delivery problem. Journal of Hydrology 65: 209–237.

    Article  Google Scholar 

  • Walling, D.E. 2006. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79: 192–216.

    Article  Google Scholar 

  • Willard, D.A., T.M. Cronin, and S. Verardo. 2003. Late-Holocene climate and ecosystem history from Chesapeake Bay sediment cores, USA. Holocene 13: 201–214.

    Article  Google Scholar 

  • Zimmerman, A.R., and E.A. Canuel. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry 69: 117–137.

    Article  CAS  Google Scholar 

  • Zimmerman, A.R., and E.A. Canuel. 2002. Sediment geochemical records of eutrophication in the Mesohaline Chesapeake Bay. Limnology and Oceanography 47: 1084–1093.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sid Mitra, John Milliman, Chris Swezey, John Rayburn, Michael Langland, and an anonymous reviewer for their insights and comments. Thanks also to Lewis Linker for assistance with the CB Community Watershed Model. Funding for C.S. was provided by a National Science Foundation Graduate Student Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey Saenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saenger, C., Cronin, T.M., Willard, D. et al. Increased Terrestrial to Ocean Sediment and Carbon Fluxes in the Northern Chesapeake Bay Associated With Twentieth Century Land Alteration. Estuaries and Coasts 31, 492–500 (2008). https://doi.org/10.1007/s12237-008-9048-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-008-9048-5

Keywords

Navigation