Skip to main content
Log in

Environmental Factors Contributing to the Development and Demise of a Toxic Dinoflagellate (Karlodinium veneficum) Bloom in a Shallow, Eutrophic, Lagoonal Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

A dense bloom of the ichthyotoxic dinoflagellate Karlodinium veneficum was discovered in the Neuse River Estuary, North Carolina, on 19 October 2006 and was associated with four subsequent fish kills. Microscopic, photopigment, DNA, and toxicological techniques confirmed bloom identity and toxicity. High-resolution spatio-temporal data from ship-board and fixed automated sampling stations provided a unique opportunity to investigate the environmental conditions that initiated, maintained, and terminated the K. veneficum bloom. Bloom initiation and growth were favored by high nutrient availability and reduced dispersal during the period of declining riverine discharge after Tropical Storm Ernesto. K. veneficum out-competed other co-occurring dinoflagellates, perhaps because of the production of karlotoxins that are known to act as grazing deterrents and to facilitate mixotrophic feeding. Once the bloom was established, small-scale hydrodynamic processes, coupled with vertical migration, concentrated cells along a frontal convergence to high densities (>200,000 cells per milliliter). By 26 October 2006, wind mixing and possible nutrient stress disrupted the bloom. Release of cell-bound toxins during the bloom collapse likely accounted for the associated fish kill events where fish were reported as exhibiting typical symptoms of karlotoxin poisoning. The dynamics of this bloom underscore the tight control of harmful algal blooms by meteorological forcing, hydrology, and sediment nutrient input in this shallow lagoonal estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adolf, J.E., D.K. Stoecker, and L.W. Harding Jr. 2003. Autotrophic growth and photoacclimation in Karlodinium micrum (dinophyceae) and Storeatula major (cryptophyceae). Journal of Phycology 39: 1101–1108.

    Article  CAS  Google Scholar 

  • Adolf, J.E., D.K. Stoecker, and L.W. Harding Jr. 2006a. The balance of autotrophy and heterotrophy during the mixotrophic growth of Karlodinium micrum (Dinophyceae). Journal of Plankton Research 28: 737–751.

    Article  CAS  Google Scholar 

  • Adolf, J.E., T.R. Bachvaroff, D.N. Krupatkina, H. Nonogaki, P.J.P. Brown, A.J. Lewitus, H.R. Harvey, and A.R. Place. 2006b. Species specificity and potential roles of Karlodinium micrum toxin. African Journal of Marine Science 28: 415–419.

    Google Scholar 

  • Adolf, J.E., T.R. Bachvaroff, D.N. Krupatkina, and A.R. Place. 2007. Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum. Harmful Algae 6: 400–412.

    Article  CAS  Google Scholar 

  • Amano, K., M. Watanabe, K. Kohata, and S. Harada. 1998. Conditions necessary for Chattonella antiqua red tide outbreaks. Limnology and Oceanography 43: 117–128.

    CAS  Google Scholar 

  • Ault, T.R. 2000. Vertical migration by the marine dinoflagellate Prorocentrum triestinum maximizes photosynthetic yield. Oecologia 125: 266–475.

    Article  Google Scholar 

  • Bachvarroff, T.R., J.E. Adolf, A. Squier, H.R. Harvey, and A.R. Place. 2007. Characterization and quantification of karlotoxins by liquid chromatography–mass spectrometry. Harmful Algae (IN PRESS). DOI 10.1016/j.hal.2007.10.003.

  • Bowers, H.A., C. Tomas, J.W. Kempton, A.J. Lewitus, T. Tengs, and D.W. Oldach. 2006. Raphidophyceae [Chadefaud ex Silva] systematics and rapid identification: sequence analyses and real-time PCR assays. Journal of Phycology 42: 1333–1348.

    Article  CAS  Google Scholar 

  • Campbell, P.H. 1973. Studies on brackish water phytoplankton. Chapel Hill, North Carolina: University of North Carolina Sea Grant Program.

    Google Scholar 

  • Chang, J., and E.J. Carpenter. 1985. Blooms of the dinoflagellate Gyrodinium aureolum in a Long Island estuary: box model analysis of bloom maintenance. Marine Biology 89: 83–93.

    Article  Google Scholar 

  • Clesceri, L.S., A.E. Greenberg, and A.D. Eaton (eds.). 1998. Standard methods for the examination of water and wastewater, 20th edn, 10–13, 1. Washington, DC: American Public Health Association.

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Cloern, J.E., T.S. Schraga, C.B. Lopez, N. Knowles, R.G. Labiosa, and R. Dugdale. 2005. Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay. Geophysical Research Letters 32: L14608.

    Article  Google Scholar 

  • Daugbjerg, N., G. Hansen, J. Larsen, and O. Moestrup. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302–417.

    Google Scholar 

  • Deeds, J.R., D.E. Terlizzi, J.E. Adolf, D.K. Stoecker, and A.R. Place. 2002. Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae) a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1: 169–189.

    Article  CAS  Google Scholar 

  • Deeds, J.R., R. Reimschussel, and A.R. Place. 2006. Histopathological effects in fish exposed to the toxins from Karlodinium micrum (Dinophyceae). Journal of Aquatic Animal Health 18: 136–148.

    Article  Google Scholar 

  • Eschbach, E., J. Scharsack, U. John, and L. Medlin. 2001. Improved erythrocyte lysis assay in microtitre plates for sensitive detection and efficient measurement of haemolytic compounds from ichthyotoxic algae. Journal of Applied Toxicology 21: 513–539.

    Article  CAS  Google Scholar 

  • Fensin, E.E. 2004. Occurrence and ecology of the dinoflagellate Karlodinium micrum in estuaries of North Carolina, USA. In Harmful algae 2002, eds. K.A. Steidinger, J.H. Landsberg, C.R. Tomas, and G.A. Vargo, 62–67. St. Petersburg, FL: Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.

    Google Scholar 

  • Fogg, G.E. 2002. Harmful algae—a perspective. Harmful Algae 1: 1–4.

    Article  Google Scholar 

  • Glibert, P.M., R. Magnien, M.W. Lomas, J. Alexander, C. Fan, E. Haramoto, M. Trice, and T.M. Kana. 2001. Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events. Estuaries 24: 875–883.

    Article  CAS  Google Scholar 

  • Goshorn, D., J. Deeds, P. Tango, C. Poukish, A. Place, M. McGinty, W. Butler, C. Luckett, and R. Morgan. 2004. Occurrence of Karlodinium micrum and its association with fish kills in Maryland estuaries. In Harmful Algae 2002, eds. K.A. Steidinger, J.H. Landsberg, C.R. Tomas, and G.A. Vargo, 361–363. St. Petersburg, FL: Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.

    Google Scholar 

  • Hallegraeff, G.M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.

    Google Scholar 

  • Hansen, B., P.K. Bjornsen, and P.J. Hansen. 1994. The size ratio of planktonic predators and their prey. Limnology and Oceanography 39: 395–403.

    Google Scholar 

  • Holmes, R.W., P.M. Williams, and R.W. Eppley. 1967. Red water in La Jolla Bay, 1964–1966. Limnology and Oceanography 12: 503–512.

    CAS  Google Scholar 

  • Janowitz, G.S., and D. Kamykowski. 2006. Modeled Karenia brevis accumulation in the vicinity of a coastal nutrient front. Marine Ecology Progress Series 314: 49–59.

    Article  Google Scholar 

  • Jeong, H.J., D.Y. Yeong, J.Y. Park, J.Y. Song, S.T. Kim, S.H. Lee, K.Y. Kim, and W.H. Yih. 2005. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquatic Microbial Ecology 40: 133–150.

    Article  Google Scholar 

  • Johnson, M.D., M. Rome, and D.K. Stoecker. 2003. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnology and Oceanography 48: 238–248.

    Google Scholar 

  • Juhl, A.R., V. Velazquez, and M.I. Latz. 2000. Effect of growth conditions on flow-induced inhibition of population growth of a red-tide dinoflagellate. Limnology and Oceanography 45: 905–915.

    Google Scholar 

  • Kempton, J.W., A.J. Lewitus, J.R. Deeds, J.M. Law, and A.R. Place. 2002. Toxicity of Karlodinium micrum (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae 1: 233–244.

    Article  CAS  Google Scholar 

  • Kramer, D.L. 1987. Dissolved oxygen and fish behaviour. Environmental Biology of Fishes 18: 81–92.

    Article  Google Scholar 

  • Li, A., D.K. Stoecker, and J.E. Adolf. 1999. Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquatic Microbial Ecology 19: 163–176.

    Article  Google Scholar 

  • Li, A., D.K. Stoecker, and D.W. Coats. 2000. Spatial and temporal aspects of Gyrodinium galatheanum in Chesapeake Bay: distribution and mixotrophy. Journal of Plankton Research 22: 2105–2124.

    Article  Google Scholar 

  • Luettich, R.A., J.E. McNinch, H.W. Paerl, C.H. Peterson, J.T. Wells, M.A. Alperin, C.S. Martens, and J.L. Pinckney. 2000. Neuse River Estuary modeling and monitoring project stage 1: hydrography and circulation, water column nutrients and productivity, sedimentary processes and benthic–pelagic coupling, and benthic ecology. North Carolina: North Carolina Water Resources Research Institute Report 325 B. Raleigh.

    Google Scholar 

  • Luettich, R.A., S.D. Carr, and J.V. Reynolds-Fleming. 2002. Semi-diurnal seiching in a shallow, micro-tidal lagoonal estuary. Continental Shelf Research 22: 1669–1681.

    Article  Google Scholar 

  • Miller, W.D., L.W. Harding, and J.E. Adolf. 2006. Hurricane Isabel generated an unusual fall bloom in Chesapeake Bay. Geophysical Research Letters 33: L06612.

    Article  Google Scholar 

  • Nakamura, Y., S. Suzuki, and J. Hiromi. 1996. Development and collapse of a Gymnodinium mikimotoi red tide in the Seto Inland Sea. Aquatic Microbial Ecology 10: 131–137.

    Article  Google Scholar 

  • Nielsen, M.V. 1993. Toxic effects of the marine dinoflagellate Gymnodinium galatheanum on juvenile cod Gadus morhua. Marine Ecology Progress Series 95: 273–277.

    Article  Google Scholar 

  • Nielsen, M.V. 1996. Growth and chemical composition of the toxic dinoflagellate Gymnodinium galatheanum in relation to irradiance, temperature, and salinity. Marine Ecology Progress Series 136: 205–211.

    Article  CAS  Google Scholar 

  • North Carolina Department of Environment and Natural Resources—Division of Water Quality. 2001. Phase II of the total maximum daily load for total nitrogen to the Neuse River Estuary, North Carolina. Raleigh, North Carolina: NCDENR–DWQ.

    Google Scholar 

  • North Carolina Department of Environment and Natural Resources—Division of Water Quality. 2007. Environmental Sciences Section. Fish kill data base 2006. http://h2o.enr.state.nc.us/esb/Fishkill/fishkillmain.htm. Accessed 6 June 2007.

  • Paerl, H.W., J.L. Pinckney, J.M. Fear, and B.L. Peierls. 1998. Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series 166: 17–25.

    Article  CAS  Google Scholar 

  • Paerl, H.W., L.M. Valdes, M.F. Piehler, and M.E. Lebo. 2004. Solving problems resulting from solutions: The evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North Carolina, USA. Environmental Science & Technology 38: 3068–3073.

    Article  CAS  Google Scholar 

  • Park, M.G., W. Yih, and D.W. Coats. 2004. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. Journal of Eukaryotic Microbiology 51: 145–155.

    Article  Google Scholar 

  • Peierls, B.L., R.R. Christian, and H.W. Paerl. 2003. Water quality and phytoplankton as indicators of hurricane impacts on a large estuarine ecosystem. Estuaries 26: 1329–1343.

    CAS  Google Scholar 

  • Pinckney, J.L., D.F. Millie, K.E. Howe, H.W. Paerl, and J.P. Hurley. 1996. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. Journal of Plankton Research 18: 1867–1880.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., D.F. Millie, B.T. Vinyard, and H.W. Paerl. 1997. Environmental controls of phytoplankton bloom dynamics in the Neuse River Estuary, North Carolina, USA. Canadian Journal of Fisheries and Aquatic Sciences 54: 2491–2501.

    Article  Google Scholar 

  • Raven, J.A., and R.J. Geider. 1988. Temperature and algal growth. New Phytologist 110: 441–461.

    Article  CAS  Google Scholar 

  • Smayda, T.J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography 42: 1137–1153.

    Google Scholar 

  • Steidinger, K.A. 1983. A re-evaluation of toxic dinoflagellate biology and ecology. Progress in Phycological Research 2: 147–188.

    Google Scholar 

  • Stoecker, D., R.L. Guillard, and R.M. Kavee. 1981. Selective predation by Favella ehrenbergii (Tintinnia) on and among dinoflagellates. Biological Bulletin 160: 136–145.

    Article  Google Scholar 

  • Sunda, W.G., E. Graneli, and C.J. Gobler. 2006. Positive feedback and the development and persistence of ecosystem disruptive algal blooms. Journal of Phycology 42: 963–974.

    Article  Google Scholar 

  • Tyler, M.A., and H.H. Seliger. 1978. Annual subsurface transport of a red tide dinoflagellate to its bloom area: Water circulation patterns and organism distributions in the Chesapeake Bay. Limnology and Oceanography 23: 227–246.

    Article  Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen phytoplanktonmethodik. Mitteilungen, Internationale Vereinigung fr Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Valdes-Weaver, L.M., M.F. Piehler, J.L. Pinckney, K.E. Howe, K. Rosignol, and H.W. Paerl. 2006. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse–Pamlico estuarine continuum, NC, USA. Limnology and Oceanography 51: 1410–1420.

    Article  Google Scholar 

  • Vollenweider, R.A. 1974. A manual for measuring primary production in aquatic environments. IBP handbook no. 12. F. A. Philadelphia: Davis Company.

    Google Scholar 

  • Waggener, A.L. 2006. The chlorophyll—a maximum of the Neuse River Estuary, North Carolina, United States of America: Nutrient dynamics and trophic interaction at the most productive region of the system. North Carolina. M.S. thesis, University of North Carolina at Chapel Hill.

  • Watras, C.J., V.C. Garcon, R.J. Olson, S.W. Chisholm, and D.M. Anderson. 1985. The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis. Journal of Plankton Research 7: 891–908.

    Article  Google Scholar 

Download references

Acknowledgment

Thanks to the dedicated technicians of the Paerl, Litaker (Mark W. Vandersea), and Place laboratories for their analytical contributions. Thanks to A. Joyner for help in generating the site map. R. Waggett, B. Peierls, and W. G. Sunda provided constructive critiques of the manuscript. This work was supported by the North Carolina Department of Environment and Natural Resources (ModMon Program), the North Carolina Sea Grant Program, the US EPA-STAR-EaGLe Program, and the National Science Foundation, Ecosystems, Environmental Geochemistry and Biology (EGB) and Ecology of Infectious Diseases (EID) Programs. Toxin analyses were supported by grants from NOAA Coastal Oceans Program (grant no. NA04NOS4780276), Centers for Disease Control and Prevention (grant no. U50/CCU 323376) and the Maryland Department of Health and Mental Hygiene to University of Marine Biotechnology Institute. This is contribution number 220 from the NOAA ECOHAB program and contribution number 07-172 from the University of Maryland Biotechnology Institute, Center of Marine Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, N.S., Litaker, R.W., Fensin, E. et al. Environmental Factors Contributing to the Development and Demise of a Toxic Dinoflagellate (Karlodinium veneficum) Bloom in a Shallow, Eutrophic, Lagoonal Estuary. Estuaries and Coasts: J CERF 31, 402–418 (2008). https://doi.org/10.1007/s12237-008-9035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-008-9035-x

Keywords

Navigation