Skip to main content

How Waterlogged Microsites Help an Annual Plant Persist Among Salt Marsh Perennials

Abstract

Annual plants that coexist among perennial dominants might persist in microsites that are stressful to their competitors. In Californian salt marshes, where cover of annual and perennial Salicornia species are negatively correlated, we hypothesized that waterlogged depressions support the annual (Salicornia bigelovii) but not the region’s dominant perennial (Salicornia virginica). In a large restoration site, S. virginica cover was low in naturally formed pools, and our 10-cm depressions decreased its cover by approximately 30% compared to the controls. S. bigelovii grew taller and produced more flowers in waterlogged sites with low soil redox potential, and it completed its life cycle in the 5-cm-deep depressions that we created. Experimentally reducing S. virginica canopy cover in shallow depressions also increased the survival of the annual. In the greenhouse, rhizosphere oxidation was indicated as a mechanism for tolerating waterlogging, as S. bigelovii elevated the soil redox potential by 50 mV more than S. virginica did. Also, in the greenhouse, S. bigelovii seedlings actually suppressed the growth of S. virginica seedlings under increased flooding. We conclude that waterlogged microsites help sustain S. bigelovii in Californian salt marshes and that this increasingly rare plant could be managed by adding shallow depressions to restoration sites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adam, P. 1990. Salt marsh ecology. New York, NY: Cambridge University Press.

    Google Scholar 

  • Armitage, A. R., K. E. Boyer, R. R. Vance, and R. F. Ambrose. 2006. Restoring assemblages of salt marsh halophytes in the presence of a rapidly colonizing dominant species. Wetlands 26: 667–676.

    Article  Google Scholar 

  • Armstrong, W. 1982. Waterlogged soilsIn Environment and plant ecology, ed. New York, NY: Wiley.

    Google Scholar 

  • Ayala, F., W. J., and O’Leary. 1995. Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. International Journal of Plant Sciences 156: 197–197.

    Article  Google Scholar 

  • Bazzaz, F. A. 1979. The physiological ecology of plant succession. Annual Review of Ecology and Systematics 10: 351–371.

    Article  Google Scholar 

  • Bertness, M. D., and A. M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57: 129–147.

    Article  Google Scholar 

  • Bonin, C. 2007. Plant traits explain abundance rank in salt marsh vegetation. M.S. Thesis, University of Wisconsin, Madison, Wisconsin.

  • Boyer, K. E., and J. B. Zedler. 1999. Nitrogen addition could shift plant community composition in a restored California salt marsh. Restoration Ecology 7: 74–85.

    Article  Google Scholar 

  • Boyer, K. E., P. Fong, R. R. Vance, and R. F. Ambrose. 2001. Salicornia virginica in a southern California salt marsh: Seasonal patterns and a nutrient enrichment experiment. Wetlands 21: 315–326.

    Article  Google Scholar 

  • Brewer, J. S., J. M. Levine, and M. D. Bertness. 1997. Effects of biomass removal and elevation on species richness in a New England salt marsh. Oikos 80: 333–341.

    Article  Google Scholar 

  • Callaway, J. C., G. Sullivan, and J. B. Zedler. 2003. Species-rich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment. Ecological Applications 13: 1626–1639.

    Article  Google Scholar 

  • Cantilli, J. F. 1989. Sulfide phytotoxicity in salt marshes. M.S. Thesis, San Diego State University, San Diego, California.

  • Chapman, V. J. 1974. Salt marshes and salt deserts of the world. Lehre, Germany: J. Cramer.

    Google Scholar 

  • Covin, J. D., and J. B. Zedler. 1988. Nitrogen effects on Spartina foliosa and Salicornia virginica in the salt marsh at Tijuana Estuary, California. Wetlands 8: 51–65.

    Article  Google Scholar 

  • Drew, M. C., and L. H. Stolzy. 1991. Growth under oxygen stressIn Plant roots: the hidden half, eds. , A. Eshel, and U. KafkafiNew York: Marcel Dekker.

    Google Scholar 

  • Ellison, A. M. 1987. Effects of competition, disturbance, and herbivory on Salicornia europaea. Ecology 68: 576–586.

    Article  Google Scholar 

  • Faulkner, S. P., W. H. Patrick Jr, and P. R. Gambrell. 1989. Field techniques for measuring wetland soil parameters. Journal of Soil Science Society of America 53: 883–890.

    CAS  Article  Google Scholar 

  • Floyd, D. A., and J. E. Anderson. 1982. A new point interception frame for estimating cover of vegetation. Vegetatio 50: 185–186.

    Article  Google Scholar 

  • Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169–1194.

    Article  Google Scholar 

  • Hartman, J. M. 1988. Recolonization of small disturbance patches in a New England salt marsh. American Journal of Botany 11: 1625–1631.

    Article  Google Scholar 

  • Hutchinson, G. E. 1951. Copepodology for the ornithologist. Ecology 32: 571–577.

    Article  Google Scholar 

  • Ingold, A., and D. C. Havill. 1984. The influence of sulphide on the distribution of higher plants in salt marshes. Journal of Ecology 72: 1043–1054.

    Article  CAS  Google Scholar 

  • Larkin, D. J., G. Vivian-Smith, and J. B. Zedler. 2006. Topographic heterogeneity theory and ecological restorationIn Foundations of Restoration Ecology, eds. , M. Palmer, and J. B. Zedler, 144–164. Washington, DC: Island Press.

    Google Scholar 

  • Lindig-Cisneros, R., and J. B. Zedler. 2002. Halophyte recruitment in a salt marsh restoration site. Estuaries 25: 1174–1183.

    Google Scholar 

  • Mahall, B. E., and R. B. Park. 1976. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay. Journal of Ecology 64: 811–821.

    Article  Google Scholar 

  • Morzaria-Luna, H. N., J. C. Callaway, G. Sullivan, and J. B. Zedler. 2004. Relationship between topographic heterogeneity and vegetation patterns in a Californian salt marsh. Journal of Vegetation Science 15: 523–530.

    Article  Google Scholar 

  • Morzaria-Luna, H. N. 2005. Determinants of plant species assemblages in the California marsh plain: Implication for restoration of ecosystem function. Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin.

  • Neuenschwander, L. F., T. H. Thorsted Jr., and R. J. Vogl. 1979. The salt marsh and transitional vegetation of Bahia de San Quintin. Bulletin of the Southern California Academy of Sciences 78: 163–182.

    Google Scholar 

  • O’Brien, E. L., and J. B. Zedler. 2006. Accelerating the restoration of vegetation in a southern California salt marsh. Wetlands Ecology and Management 14: 269–286.

    Article  Google Scholar 

  • Platt, W. J., and J. H. Connell. 2003. Natural disturbance and directional replacement of species. Ecological Monographs 73: 507–522.

    Article  Google Scholar 

  • Purer, E. A. 1942. Plant ecology of the coastal salt marshlands of San Diego county, California. Ecological Monographs 12: 82–11.

    Article  Google Scholar 

  • Ranwell, D. S. 1972. Ecology of salt marshes and sand dunes. London, England: Chapman and Hall.

    Google Scholar 

  • SCWRP (Southern California Wetland Recovery Project). 2007. http://www.scwrp.org.

  • Seliskar, D. M. 1985. Effect of reciprocal transplanting between extremes of plant zones on morphometric plasticity of five plant species in an Oregon salt marsh. Canadian Journal of Botany 63: 2254–2262.

    Article  Google Scholar 

  • Sullivan, G. J., and J. B. Zedler. 1999. Functional redundancy among halophytes: a test. Oikos 84: 246–260.

    Article  Google Scholar 

  • Sullivan, G., J. Callaway, and J.B. Zedler. 2007. Biodiversity effects among 32 salt marsh assemblages are largely due to species. Ecological Monographs in press.

  • Tessier, M., J. Gloaguen, and J. C. Lefeuvre. 2000. Factors affecting the population dynamics of Suaeda maritima at initial states of development. Plant Ecology 147: 193–203.

    Article  Google Scholar 

  • Tessier, M., J. Gloaguen, and V. Bouchard. 2002. The role of spatio-temporal heterogeneity in the establishment and maintenance of Suaeda maritima in salt marshes. Journal of Vegetation Science 13: 115–122.

    Article  Google Scholar 

  • Thibodeau, P. M., L. R. Gardner, and H. W. Reeves. 1998. The role of groundwater flow in controlling the spatial distribution of soil salinity and rooted macrophytes in a southeastern salt marsh, USA. Mangroves and Salt Marshes 2: 1–13.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, C. Cogswell, J. Hartman, S. Allen, R. van Etten, and D. Goehringer. 1985. Some long-term consequences of sewage contamination in salt marsh ecosystemsIn Ecological considerations in wetlands treatment of municipal wastewaters, eds. , E. R. Kaynor, S. Pelczarski, and J. Benforado, 301–316. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Vartapetian, B. B., and M. B. Jackson. 1997. Plant adaptations to anaerobic stress. Annals of Botany 79: 3–20.

    Article  CAS  Google Scholar 

  • Varty, A. K. 2007. The role of waterlogged refuges in the persistence of an annual plant in a perennial-dominated salt marsh. M. S. Thesis, University of Wisconsin, Madison, Wisconsin.

  • Vivian-Smith, G. 1997. Microtopographic heterogeneity and floristic diversity in experimental wetlands. Journal of Ecology 85: 71–8.

    Article  Google Scholar 

  • Wallace, K. J., J. C. Callaway, and J. B. Zedler. 2005. Evolution of tidal creek networks in a high sedimentation environment: A 5-year experiment at Tijuana Estuary. Estuaries 28: 795–811.

    Article  Google Scholar 

  • Webb, K. L. 1966. NaCl effects on growth and transpiration in Salicornia bigelovii a salt-marsh halophyte. Plant and Soil 24: 261–268.

    Article  CAS  Google Scholar 

  • Weis, D. A., J. C. Callaway, and R. M. Gersberg. 2001. Vertical accretion rates and heavy metal chronologies in wetland sediment of the Tijuana Estuary. Estuaries 24: 840–840.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. 1983. Limnology, second edition. New York, NY: Harcourt Brace College Publishers.

    Google Scholar 

  • Williams, A. C., and B. C. McCarthy. 2001. A new index of interspecific competition for replacement and additive designs. Ecological Research 16: 29–40.

    Article  Google Scholar 

  • Winfield, T. P. 1980. Dynamics of nitrogen and carbon in a southern California salt marsh. Ph.D. Dissertation, University of California Riverside and San Diego State University, San Diego, California.

  • Zedler, J. B. 1977. Salt marsh community structure in the Tijuana Estuary, California. Estuarine and Coastal Marine Science 5: 39–53.

    Article  Google Scholar 

  • Zedler, J. B. 1980. Algal mat productivity: Comparisons in a salt marsh. Estuaries 3: 122–131.

    Article  Google Scholar 

  • Zedler, J. B., J. C. Callaway, J. S. Desmond, G. Vivian-Smith, G. D. Williams, G. Sullivan, A. E. Brewster, and B. K. Bradshaw. 1999. Californian salt-marsh vegetation: An improved model of spatial pattern. Ecosystems 2: 19–35.

    Article  Google Scholar 

  • Zedler, J. B., J. C. Callaway, and G. Sullivan. 2001. Declining biodiversity: Why species matter and their functions might be restored in California tidal marshes. BioScience 51: 1005–1017.

    Article  Google Scholar 

  • Zedler, J. B., H. N. Morzaria-Luna, and K. Ward. 2003. The challenge of restoring vegetation on tidal, hypersaline substrates. Plant and Soil 253: 259–273.

    Article  CAS  Google Scholar 

  • Zedler, J. B., and J. M. West. 2007. Declining diversity in natural and restored salt marshes: A 30-year study of Tijuana Estuary. Restoration Ecology in press. DOI 10.1111/j.1526-100X.2007.00268.x.

Download references

Acknowledgments

This research was funded by the National Science Foundation (DEB 0212005 to J. Zedler and J. Callaway and DEB 9619875 to J. Zedler, J. Callaway, and G. Sullivan) and Earth Island Institute (to J. Zedler). B. Larget and N. Keuler provided statistical advice. Comments by S. Hotchkiss and D. Waller improved the manuscript. Sebastian Arrayola, Cathi Bonin, Dan Larkin, Shane Lishawa, and Brian McIlraith are acknowledged for the field and greenhouse assistance. We thank Dr. Stephen Threlkeld and reviewers for comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy B. Zedler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varty, A.K., Zedler, J.B. How Waterlogged Microsites Help an Annual Plant Persist Among Salt Marsh Perennials. Estuaries and Coasts: J CERF 31, 300–312 (2008). https://doi.org/10.1007/s12237-007-9019-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-007-9019-2

Keywords

  • Depressions
  • Microtopography
  • Restoration
  • Tidal pools
  • Salicornia bigelovii
  • Salicornia virginica
  • Topographic heterogeneity