Abstract
Microcenters of diversity of crop plants are small geographic areas, while regions of diversity are large and relatively diffuse areas that conserve high or moderate genetic diversity, respectively. This study aimed to identify microcenters and regions of maize diversity in different areas of lowland South America, in Brazil and Uruguay, proposing a new methodological approach based on ethnobotanical, morphological, and molecular indicators and genetic diversity indices. The collection areas considered microcenters were surrounded by a buffer of 50 km (area: 7,850 km2) and the regions by buffers of 150 km (area: 70,650 km2) to 300 km (area: 282,600 km2). The study was carried out in parts of the biomes of Amazonia, Caatinga, Cerrado, Atlantic Forest, and Pampa. A total of 261 farmers participated, of whom 129 were interviewed. Four microcenters and four regions of maize diversity were identified, showing: (i) richness and genetic diversity of landraces (mostly unique to each region) and richness of maize races; (ii) the presence of landraces under diversification by current human action as diagnosed by sociocultural aspects and diversity of uses attributed to landraces; and, (iii) maize germplasm conservation areas, on microregional and regional geographic scales. Indicators of strengths, weaknesses, opportunities, and threats were identified in the areas involved in the study.
This is a preview of subscription content, access via your institution.




Data Availability
The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.
References
Al-Beyroutiová, M., M. Sabo, P. Sleziak, R. Dušinský, E. Birčák, P. Hauptvogel, A. Kilian, and M. Švec. 2016. Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism. Plant Systematics and Evolution 302: 1083-1091. https://doi.org/10.1007/s00606-016-1318-2
Altieri, M. A., and P. Koohafkan. 2008. Enduring farms: Climate change, smallholders and traditional farming communities. Environment and Development Series 6: 65. https://www.fao.org/in-action/kagera/information-resources/details/en/c/242383/
Arca, M., B. Gouesnard, T. Mary-Huard, M. C. Le Paslier, C. Bauland, V. Combes, D. Madur, A. Charcosset, and S. D. Nicolas. 2020. Genome-wide SNP genotyping of DNA pools identifies untapped landraces and genomic regions that could enrich the maize breeding pool. BioRxiv. https://doi.org/10.1101/2020.09.30.321018
Bashalkhanov, S., M. Pandey, and O. P. Rajora. 2009. A simple method for estimating genetic diversity in large populations from finite sample sizes. BMC Genetics 10(84). https://doi.org/10.1186/1471-2156-10-84
Bedoya, C. A., S. Dreisigacker, S. Hearne, J. Franco, C. Mir, B. M. Prasanna, S. Taba, A. Charcosset, and M. L. Warburton. 2017. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS One 12(4): e0173488. https://doi.org/10.1371/journal.pone.0173488
Bellon, M. R., J. Berthaud, M. Smale, J. A. Aguirre, S. Taba, F. Aragon, J. Diaz, and H. Castro. 2003. Participatory landrace selection for on-farm conservation: an example from the Central Valleys of Oaxaca, Mexico. Genetic Resources and Crop Evolution 50: 401-416. https://doi.org/10.1023/A:1023967611495
Bird, R. M., and M.M. Goodman. 1977. The races of maize V: grouping maize races on the basis of ear morphology. Economic Botany 31: 471-481. https://doi.org/10.1007/BF02912560
Bracco, M., J. Cascales, J. C. Hernández, L. Poggio, A. M. Gottlieb, and V. V. Lia. 2016. Dissecting maize diversity in lowland South America: genetic structure and geographic distribution models. BMC Plant Biology 16: 186. https://doi.org/10.1186/s12870-016-0874-5
Brieger, F. G., J. T. A. Gurgel, E. Paterniani, A. Blumenchein, and M. R. Alleoni. 1958. Races of maize in Brazil and other Eastern South American countries. Washington DC: National Academic of Sciences.
Brown, A. H. D. 2008. Indicators of genetic diversity, genetic erosion and genetic vulnerability for plant genetic resources for food and agriculture. Rome: Thematic Background Study, FAO Report State of the World PGRFA.
Bush, M. B., M. C. Miller, P. E. de Oliveira, and P. A. Colinvaux. 2000. Two histories of environmental change and human disturbance in eastern lowland Amazonia. The Holocene 10: 543-553. https://doi.org/10.1191/095968300672647521
Castro e Silva, M. A., K. Nunes, R. B. Lemes, and T. Hünemeier. 2020. Genomic insight into the origins and dispersal of the Brazilian coastal natives. Proceedings of the National Academy of Science of the United States 117: 2372-2377. https://doi.org/10.1073/pnas.1909075117
Cavalcanti, T. F. M., C. P. Sudré, J. W. D. S. Corrêa, C. D. S. Bento, E. K. V. D. Andrade, K. K. N. Fukuji, and R. Rodrigues. 2021. Custodians of common bean diversity in Rio de Janeiro state, Brazil: revealing their socioeconomic and environmental profile. Agroecology and Sustainable Food Systems 45: 1161-1188. https://doi.org/10.1080/21683565.2021.1888186
Clement, C. R. 1999. 1492 and the loss of Amazonian crop genetic resources I. The relation between domestication and human population decline. Economic Botany 53: 188-202. https://doi.org/10.1007/BF02866498
Clement, C. R., D. P. Rodrigues, A. Alves-Pereira, G. S. Mühlen, M. Cristo-Araújo, P. A. Moreira, J. Lins, and V. M. Reis. 2016. Crop domestication in the upper Madeira River basin. Boletim do Museu Paraense Emílio Goeldi 11: 193-205. https://doi.org/10.1590/1981.81222016000100010
Coomes, O. T., S .J. McGuire, E. Garine, S. Caillon, Mickey, E. Demeulenaere, D. Jarvis, G. Aistara, A. Barnaud, P. Clouvel, L. Temporaire, S. Louafi, P. Martin, F. Massol, M. Pautasso, C. Violon, and J. Wencélius. 2015. Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 56: 41-50. https://doi.org/10.1016/j.foodpol.2015.07.008
Costa, F. M., N. C. A. Silva, and J. B. Ogliari. 2017. Maize diversity in southern Brazil: indication of a microcenter of Zea mays L. Genetic Resources and Crop Evolution 64: 681-700. https://doi.org/10.1007/s10722-016-0391-2
Costa, F. M., N. C. A. Silva, R. Vidal, C. R. Clement, R. P. Alves, P. C. Bianchini, M. Haverroth, F. O. Freitas, and E. A. Veasey. 2021. Entrelaçado, a rare maize race conserved in Southwestern Amazonia. Genetic Resources and Crop Evolution 68: 51-58. https://doi.org/10.1007/s10722-020-01008-0
Costa, F. M., N. C. A. Silva, R. Vidal, C. R. Clement, F. O. Freitas, A. Alves-Pereira, C. D. Petroli, M. I. Zucchi, and E. A. Veasey. 2022. Maize dispersal patterns associated with different types of endosperm and migration of indigenous groups in lowland South America. Annals of Botany 129: 737-751. https://doi.org/10.1093/aob/mcac049
Doyle, J. J., and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Dzib-Aguilar, L. A., R. Ortega-Paczka, and J. C. Segura-Correa. 2016. In situ conservation and participative improvement of creole maize in the Peninsula de Yucatan. Tropical and Subtropical Agroecosystems 19: 51–59. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2179/1004
Eriksen, L. 2011. Nature and culture in prehistoric Amazonia: Using GIS to reconstruct ancient ethnogenetic processes from archaeology, linguistics, geography, and ethnohistory. Dissertation. Sweden: Lund University
Food and Agriculture Organization of the United Nations (FAO). 2006. Strengthening National Food Control Systems. Guidelines to Assess Capacity Building needs. Rome: FAO.
Food and Agriculture Organization of the United Nations (FAO). 2018. Exploring possible elements of a Joint programme on biodiversity in agriculture for sustainable use of PGRFA 2020–2030. Informal Meeting of Experts. Rome: CIHEAM Bari, FAO.
Food and Agriculture Organization of the United Nations (FAO). 2021. Globally Important Agricultural Heritage Systems - GIAHS. http://www.fao.org/giahs/en/ (20 July 2022).
Franco, J., J. Crossa, M. L. Warburton, and S. Taba. 2006. Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Science 46: 854-864. https://doi.org/10.2135/cropsci2005.07-0201
Frankel, O. H., A. H. D. Brown, and J. J. Burdon. 1995. The conservation of plant biodiversity. Cambridge: Cambridge University Press.
Freitas, F.O., G. Bandel, R.G. Allaby, and T.A. Brown. 2003. DNA from primitive maize landraces and archaeological remains: implications for the domestication of maize and its expansion into South America. Journal of Archaeological Science 30: 901-908. https://doi.org/10.1016/S0305-4403(02)00269-8
Giacometti, D. C. 1992. Recursos genéticos de fruteiras nativas do Brasil. In: Simpósio Nacional De Recursos Genéticos de Fruteiras Nativas, eds. EMBRAPA-CNPMF, 13–27. Cruz das Almas: EMBRAPA-CNPMF.
Gomez, J. A. A., M. R. Bellon, and M. Smale. 2000. A regional analysis of maize biological diversity in Southeastern Guanajuato, Mexico. Economic Botany 54: 60-72. https://doi.org/10.1007/BF02866600
Goudet, J. 2005. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes 5: 184-186. https://doi.org/10.1111/j.1471-8278.2004.00828.x
Hammer, Ø., D. Harper, and P. D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Harlan, J. R. 1971. Agricultural origins: centers and noncenters. Science 174: 468-173. https://doi.org/10.1126/science.174.4008.468
Harlan, J. R. 1992. Crops and man, 2 ed. Madison: American Society of Agronomy/Crop Science Society of America.
Hawkes, J. G. 1983. The diversity of crop plants. Cambridge: Harvard University Press.
Hilbert, L., E. G. Neves, F. Pugliese, B. S. Whitney, M. Shock, E. A. Veasey, C. A. Zimpel, and J. Iriarte. 2017. Evidence for mid-Holocene rice domestication in the Americas. Nature Ecology & Evolution 1: 1693-1698. https://doi.org/10.1038/s41559-017-0322-4
Instituto Brasileiro de Geografia e Estatística – IBGE. 2021. Mapa dos Biomas 2021. http://mapgs.ibge.gov.br:80/geoserver/ows?outputFormat=SHAPE-ZIP&request=GetFeature&service=WFS&typeName=BDIAWEB%3Av_vg_area_geo&version=1.0.0 (5 March 2021).
Iriarte, J., I. Holst, O. Marozzi, E. Alonso, A. Rinderknecht, and J. Montaña. 2004. Evidence for cultivar adoption and emerging complexity during the mid-Holocene in the La Plata Basin, Uruguay. Nature 432: 614-617. https://doi.org/10.1038/nature02983
Jacobsen, S., M. Sørensen, S. M. Pedersen, and J. Weiner. 2015. Using our agrobiodiversity: plant-based solutions to feed the world. Agronomy for Sustainable Development 35: 1217-1235. https://doi.org/10.1007/s13593-015-0325-y
Jarvis, D. I., A. H. D. Brown, P. H. Cuong, L. Collado-Panduro, L. Latournerie-Moreno, S. Gyawali, and T. Tanto. 2008. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proceedings of the National Academy of Sciences of the United States 105(14): 5326-5331. https://doi.org/10.1073/pnas.0800607105
John, D. A., and G. R. Babu. 2021. Lessons from the aftermaths of Green Revolution on food system and health. Frontiers in Sustainable Food Systems 5: 644559. https://doi.org/10.3389/fsufs.2021.644559
Kamvar, Z. N., J. F. Tabima, and N. J. Grünwald. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2: e281. https://doi.org/10.7717/peerj.281
Kato, T. A., C. Mapes, L. M. Mera, J. A. Serratos, and R. A. Bye. 2009. Origen y diversificacion del maiz: una revision analítica, 1st ed. Ciudad de México: Universidad Autónoma de México.
Kistler, L. M., S. Y. Maezumi, J. G. de Souza, N. A. S. Przelomska, F. M. Costa, O. Smith, H. Loiselle, J. Ramos-Madrigal, N. Wales, E. Ribeiro, C. Grimaldo, A. P. Prous, M. Gilbert, P. Thomas, F. F. de Oliveira, and R. G. Allaby. 2018. Multi-proxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362: 1309-1313. https://doi.org/10.1126/science.aav0207
Koohafkan, P., and M. J. D. Cruz. 2011. Conservation and adaptive management of Globally Important Agricultural Heritage Systems (GIAHS). Journal of Resources and Ecology 2: 22-28. doi: https://doi.org/10.3969/j.issn.1674-764x.2011.01.004
Li, Y., Y. S. Shi, T. S. Cao, and T. Y. Wang. 2002. A phenotypic diversity analysis of maize germplasm preserved in China. Maydica 47: 107-114.
Lima. 2016. Reunión do Ministerio del Ambiente do Peru Seminário y Taller Internacional Clasificación Racial de la Diversidad del Maíz Peruano con fines de Bioseguridad. Ata firmada 10 agosto 2016. Peru, Lima
Lombardo, U., J. Iriarte, L. Hilbert, J. Ruiz-Pérez, J. M. Capriles, and H. Veit. 2020. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581: 190-193. https://doi.org/10.1038/s41586-020-2162-7
Louette, D., and M. Smale. 2000. Farmers’ seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113: 25-41. doi:https://doi.org/10.1023/A:1003941615886
Louette, D., A. Charrier, and J. Berthaud. 1997. In situ conservation of maize in Mexico: Genetic diversity and maize seed management in a traditional community. Economic Botany 51: 20-38. https://doi.org/10.1007/BF02910401
Maffi, L. 2015. Linguistic, cultural, and biological diversity. Annual Review of Anthropology 29: 599-617.
Matsuoka, Y., Y. Vigouroux, M. M. Goodman, J. J. Sánchez, E. Buckler, and J. F. Doebley. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States 99: 6080-6084. https://doi.org/10.1073/pnas.052125199
Maxted, N., and H. Vincent. 2021. Review of congruence between global crop wild relative hotspots and centres of crop origin/diversity. Genetic Resources of Crop Evolution 68: 1283-1297. https://doi.org/10.1007/s10722-021-01114-7
Meyer, R. S., and M. D. Purugganan. 2013. Evolution of crop species: Genetics of domestication and diversification. Nature Review Genetics 14: 840-852. https://doi.org/10.1038/nrg3605
Minas Gerais. 2018. Law nº 23.207, of 27 December 2018, institui o polo agroecológico e de produção orgânica na região da Zona da Mata. http://leisestaduais.com.br/mg/lei-ordinaria-n-23207-2018-minas-gerais-institui-o-poloagroecologico-e-de-producaoorganica-na-regiao-da-zona-da-mata (2 March 2020).
Mir, C., T. Zerjal, V. Combes, F. Dumas, D. Madur, C. Bedoya, et al. 2013. Out of America: tracing the genetic footprints of the global diffusion of maize. Theoretical and Applied Genetics 126: 2671-2682. https://doi.org/10.1007/s00122-013-2164-z
Myers, N. 1990. The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10: 243-256. https://doi.org/10.1007/BF02239720
Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858. https://doi.org/10.1038/35002501
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. https://doi.org/10.1093/genetics/89.3.583
Pacicco, L., M. Bodesmo, R. Torricelli, and V. Negri V. 2018. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources. PLoS ONE 13: e0197709. https://doi.org/10.1371/journal.pone.0197709
Paterniani, E., and M. M. Goodman. 1977. Races of maize in Brazil and adjacent areas. Mexico City: CIMMYT.
Pearsall, D. M., and D. R. Piperno. 1990. Antiquity of maize cultivation in Ecuador: summary and reevaluation of the evidence source. American Antiquity 55: 324-337. doi:https://doi.org/10.2307/281650
Perales, H., and D. Golicher. 2014. Mapping the diversity of maize races in Mexico. PLoS ONE 9: e114657. doi:https://doi.org/10.1371/journal.pone.0114657
Perales, R. H., S. B. Brush, and C. O. Qualset. 2003. Dynamic management of maize landraces in central Mexico. Economic Botany 57: 21-34. https://doi.org/10.1663/0013-0001(2003)057[0021:DMOMLI]2.0.CO;2
Piperno, D. R., A. J. Ranere, I. Holst, J. Iriarte, and R. Dickau. 2009. Starch grain and phytolith evidence for early ninth millennium b.p. maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States 106: 5019-5024. https://doi.org/10.1073/pnas.0812525106
Pironon, S., J. S. Borrell, I. Ondo, R. Douglas, C. Phillips, C. K. Khoury, M. B. Kantar, N. Fumia, M. Soto Gomez, J. Viruel, R. Govaerts, F. Forest, and A. Antonelli. 2020. Toward unifying global hotspots of wild and domesticated biodiversity. Plants 9: 1128. https://doi.org/10.3390/plants9091128
R Development Core Team, 2015. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (20 July 2021).
Raymond, C. M., B. A. Bryan, D. H. MacDonald, A. Cast, S. Strathearn, A. Grandgirard, and T. Kalivas. 2009. Mapping community values for natural capital and ecosystem services. Ecological Economics 68: 301-1315. https://doi.org/10.1016/j.ecolecon.2008.12.006
Rivas, M., J. M. Filippini, H. Cunha, J. Hernández, Y. Resnichenko, and R. L. Barbieri. 2017. Palm Forest landscape in Castillos (Rocha, Uruguay): Contributions to the design of a conservation area. Open Journal of Forestry 7: 97-120. https://doi.org/10.4236/ojf.2017.72007
Sansaloni, C., C. Petroli, D. Jaccoud, J. Carling, F. Detering, D. Grattapaglia, and K. Andrzej. 2011. Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proceedings 5: P54. https://doi.org/10.1186/1753-6561-5-S7-P54
Sansaloni, C., J. Franco, B. Santos, L. Percival-Alwyn, S. Singh, C. Petroli, J. Campos, K. Dreher, et al. 2020. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nature Communications 11: 4572. https://doi.org/10.1038/s41467-020-18404-w
Santilli, J. 2011. Agrobiodiversity and the law: regulating genetic resources, food security and cultural diversity. London: Earthscan,
Schroeder, C., T. K. Onyango, R. Nar, N. A. Jick, H. K. Parzies, and D. C. Gemenet. 2013. Potentials of hybrid maize varieties for small-holder farmers in Kenya: a review based on swot analysis. African Journal of Food, Agriculture, Nutrition and Development 13: 7562-7586. https://doi.org/10.4314/AJFAND.V13I2
Serratos, J. A. 2009. The origin and diversity of maize in the American continent. Ciudad de México: Universidad Autónoma de la Ciudad de México.
Shannon, C. E. 1948. A mathematical theory of communication. AT&T Technical Journal 27: 379-423.
Silva, N. C. A., R. Vidal, and J. B. Ogliari. 2017. New popcorn races in a diversity microcenter of Zea mays L. in the far west of Santa Catarina, Southern Brazil. Genetic Resources and Crop Evolution 64: 1191-1204. https://doi.org/10.1007/s10722-016-0429-5
Silva, N. C. A., R. Vidal, J. B. Ogliari, D. Costich, and J. Chen. 2020a. Relationships among American popcorns and their links with landraces conserved in a micro center of diversity. Genetic Resources and Crop Evolution 67: 1733–1753. https://doi.org/10.1007/s10722-020-00935-2
Silva, N. C. A., R. Vidal, F. M. Costa, and E. A. Veasey. 2020b. Clasificación de las razas de maíz de Brasil y Uruguay: enfoque metodológico y principales resultados. In: Maíces de las Tierras Bajas de América del Sur y Conservación de la Agrobiodiversidad en Brasil y Uruguay, eds. N. C. A. Silva, R. Vidal, F. M Costa, and E. A. Veasey, 87–109. Ponta Grossa: Atena Editora.
SISNAP, Sistema de Información del Sistema Nacional de Áreas protegidas SNAP. 2021. http://www.snap.gub.uy/sisnap (20 July 2022).
Sosinski, Ê. E., L. M. Urruth, R. L. Barbieri, M. M. Marchi, and S. G. Martens. 2019. On the ecological recognition of Butia palm groves as integral ecosystems: Why do we need to widen the legal protection and the in situ/on-farm conservation approaches? Land Use Policy 81: 124-130. https://doi.org/10.1016/j.landusepol.2018.10.041
Uruguay. 2019. Resolución n° 761–2019, Institución Nacional de Derechos Humanos y Defensoría del Pueblo - INDDHH n° 2019-I -0000363. https://www.gub.uy/institucion-nacional-derechos-humanos-uruguay/sites/institucion-nacional-derechos-humanos-uruguay/files/documentos/noticias/Resoluci%C3%B3n%20Canelones%20libre%20de%20soja_2.pdf (16 July 2021).
Valverde, A., S. M. Fraga, J. Magalhães, and W. Barroso. 2015. Agrobiodiversity products by SWOT analysis as an analysis for strategic innovation. Journal of Technology Management & Innovation 10: 57-63. https://doi.org/10.4067/S00718-27242015000400006
van Heerwaarden, J., J. Doebley, W. H. Briggs, J. C. Glaubitz, and M. M. Goodman. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Science of the United States 108: 1088–1092. https://www.pnas.org/doi/full/10.1073/pnas.1013011108
Vavilov, N. I. 1951. Phytogeographic basis of plant breeding. The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13: 14-54.
Vavilov, N. I. 1992. Origin and geography of cultivated plants. Cambridge: Cambridge University Press.
Vigouroux, Y., J. Glaubitz, Y. Matsuoka, M. M. Goodman, G. J. Sánchez, and J. F. Doebley. 2008. Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. American Journal of Botany 95: 1240-1253. https://doi.org/10.3732/ajb.0800097
Vilaró, M., R. Vidal, and T. Abadie. 2020. Diversity of maize landraces in germplasm collections from South America. Agrociencia Uruguay 23: 108. http://agrocienciauruguay.uy/ojs/index.php/agrociencia/article/view/108
Wallace, K. 2007. Classification of ecosystem services: Problems and solutions. Biological Conservation 139: 235-246. https://doi.org/10.1016/j.biocon.2007.07.015
Wesolowski, V., S. M. F. M. Souza, K. J. Reinhard, and G. Ceccantini. 2010. Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science 37: 1326-1338. https://doi.org/10.1016/j.jas.2009.12.037
Zimmerer, K. S., and D. S. Douches. 1991. Geographical approaches to crop conservation: the partitioning of genetic diversity in Andean potatoes. Economic Botany 45: 176–189. http://www.jstor.org/stable/4255333
Zimmerer, K. S., and S. Haan. 2017. Agrobiodiversity and a sustainable food future. Nature Plants 3: 17047. doi:https://doi.org/10.1038/nplants.2017.47
Acknowledgements
We thank especially all local and Indigenous farmers who collaborated with this study. We also thank the Collaborative Research Network of the Interdisciplinary Group of Agrobiodiversity Study—InterABio—(https://interabiogrupo.wixsite.com/interabio) for the support provided in the maize collections.
Funding
This research was supported by the São Paulo Research Foundation (FAPESP; process 2015/26837-0, Brazil), the Brazilian National Council for Scientific and Technological Development (CNPq; process 421045/2016-7, Brazil), and the Sectoral Commission of Scientific Research (CSIC; process id2016/400, Uruguay); CNPq awarded scholarships and research fellowships to FMC, NCAS, EAV, and CRC.
Author information
Authors and Affiliations
Contributions
FMC, NCAS, RV, and EAV planed and designed the research. FMC, NCAS, and RV collected and prepared the South American lowland material and conducted the statistical data analysis. FMC, NCAS, RV, EAV, and CRC contributed to the drafting of the manuscript, including the review, support for the interpretation, and discussion of the results. All authors reviewed and contributed to the final manuscript.
Corresponding authors
Ethics declarations
Ethics Approval
This research was approved by the Ethics Committee for Research with Human Beings of ESALQ/USP in December 2016; by the National Research Ethics Commission (CONEP), CAAE process 60382016.2.0000.5395; by the National System of Authorization and Information on Biodiversity (SisBio) (registration no. 61447-1); and was registered in the National System for the Management of Genetic Heritage and Associated Traditional Knowledge (SisGen) (registration no. AD2EF0B). Before each interview, family farmers signed the free and informed consent form.
Conflict of Interest
The authors declare no competing interests.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Costa, F.M., de Almeida Silva, N.C., Vidal, R. et al. A New Methodological Approach to Detect Microcenters and Regions of Maize Genetic Diversity in Different Areas of Lowland South America. Econ Bot (2023). https://doi.org/10.1007/s12231-023-09588-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12231-023-09588-5