Skip to main content

Advertisement

Log in

Diversity and Value of Extant Hawaiian Sugarcane (Saccharum officinarum [L.]) Cultivars

  • Original Article
  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Sugarcane is one of the most economically important crops with particular cultural and economic significance in the Hawaiian Islands. The historical influence of sugarcane in Hawai‘i tends to overshadow the fact that Native Hawaiians cultivated dozens of unique varieties of sugarcane for almost a millennium before the arrival of Europeans. The objective of this study was to characterize the genetic and phenotypic diversity of sugarcane to reexamine the relationships between traditional Hawaiian sugarcane varieties and heirloom cultivars from elsewhere in the Pacific. To this end, a morphological assessment utilizing 95 phenotypic characteristics of 53 extant cultivars held in ethnobotanical collections was conducted, along with genetic assignment using 6,570 polymorphic SNP markers on 156 diverse varieties. In investigating distinct traditional cultivars of extant sugarcane collections in Hawai ‘i as “Hawaiian,” our findings demonstrated the need for intimate knowledge and relationships with accessions in order to make meaningful interpretations of genetic and phenotypic data. Based on over 15 years of involvement with the heirloom Hawaiian canes and the traditional and contemporary uses, we demonstrated and discussed the unique value of these cultivars, and their potential to contribute to economics, sustainability, and the preservation of cultural heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abbott, I. A. and C. Shimazu. 1985. The geographic origin of the plants most commonly used for medicine by Hawaiians. Journal of Ethnopharmacology 14(2–3):213–222.

    CAS  PubMed  Google Scholar 

  • Aitken, K. S., M. D. McNeil, S. Hermann, P. C. Bundock, A. Kilian, K. Heller–Uszynska, R. J. Henry, and J. Li. 2014. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high–throughput Diversity Array Technology (DArT) markers. BMC Genomics 15(1):1–12.

    Google Scholar 

  • Altieri, M. A. 2004. Linking ecologists and traditional farmers in the search for sustainable agriculture. Frontiers in Ecology and the Environment 2(1): 35–42.

    Google Scholar 

  • Altieri, M. A. 2018. Agroecology: The science of sustainable agriculture. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Artschwager, E. and E. W. Brandes. 1958. Sugarcane (Saccharum officinarum L.): Origin, classification, characteristics, and descriptions of representative clones. United States Department of Agriculture Handbook No. 122. Washington, D.C.: United States Department of Agriculture.

    Google Scholar 

  • Asner, G. P., K. M. Carlson, and R. E. Martin. 2005. Substrate age and precipitation effects on Hawaiian forest canopies from spaceborne imaging spectroscopy. Remote Sensing of Environment 98(4):457–467.

    Google Scholar 

  • Besse, P., G. Taylor, B. Carroll, N. Berding, D. Burner, and C. L. McIntyre. 1998. Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104(2):143–153.

    CAS  PubMed  Google Scholar 

  • Bremer, L. L., K. Falinski, C. Ching, C. A. Wada, K. M. Burnett, K. Kukea–Shultz, N. Reppun, G. Chun, K. L. Oleson, and T. Ticktin. 2018. Biocultural restoration of traditional agriculture: Cultural, environmental, and economic outcomes of lo‘i kalo restoration in He‘eia, O‘ahu. Sustainability 10(12):4502.

    Google Scholar 

  • Brigham, W. T. 1899. Memoirs of the Bernice Pauahi Bishop Museum: Polynesian ethnology and natural history, Vol. I. Honolulu, Hawai‘i: Bishop Museum Press.

    Google Scholar 

  • Brigham, W. T. 1906. Memoirs of the Bernice Pauahi Bishop Museum of Polynesian ethnology and natural history, Vol. II. Honolulu, Hawai‘i: Bishop Museum Press.

    Google Scholar 

  • Chang, K., W. B. Winter, and N. K. Lincoln. 2019. Hawai‘i in focus: Navigating pathways in global biocultural leadership. Sustainability 11(1):283.

    Google Scholar 

  • Favela, A., M. O. Bohn, and A. D. Kent. 2021. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. The ISME Journal 2021:1–11.

    Google Scholar 

  • Garnett, T., M. C. Appleby, A. Balmford, I. J. Bateman, T. G. Benton, P. Bloomer, B. Burlingame, M. Dawkins, L. Dolan, and D. Fraser. 2013. Sustainable intensification in agriculture: Premises and policies. Science 341(6141):33–34.

    CAS  PubMed  Google Scholar 

  • Gray, F. du P. 1972. Hawai‘i: The sugar–coated fortress. New York: Random House Publishing.

    Google Scholar 

  • Hall, L. K. 2005. “Hawaiian at heart” and other fictions. The Contemporary Pacific 2:404–413.

    Google Scholar 

  • Handy, E. C. 1940. The Hawaiian planter: His plants, methods and areas of cultivation. Bernice Pauahi Bishop Museum Bull. 161. Honolulu, Hawai‘i: Bishop Museum Press.

    Google Scholar 

  • Hoarau, J. Y., B. Offmann, A. D’Hont, A. M. Risterucci, D. Roques, J. C. Glaszmann, and L. Grivet. 2001. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theoretical and Applied Genetics 103(1):84–97.

    CAS  Google Scholar 

  • Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. https://doi.org/10.1093/bioinformatics/17.8.754.

    Article  CAS  PubMed  Google Scholar 

  • Kagawa–Viviani, A., P. Levin, E. Johnston, J. Ooka, J. Baker, M. Kantar, and N. K. Lincoln. 2018. I ke ēwe ʻāina o ke kupuna: Hawaiian ancestral crops in perspective. Sustainability 10(12):4607.

    Google Scholar 

  • Kamakea, D. K. 1872. Memoirs of the Bernice Pauahi Bishop Museum: Vol. V. Honolulu, Hawai‘i: Bishop Museum Press.

    Google Scholar 

  • Langston, B. J. and N. K. Lincoln. 2018. The role of breadfruit in biocultural restoration and sustainability in Hawai‘i. Sustainability 10(11):3965.

    Google Scholar 

  • Lê, S., J. Josse, and F. Husson. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25(1). https://doi.org/10.18637/jss.v025.i01.

  • Lincoln, N. K. 2020. Kō: An ethnobotanical guide to Hawaiian sugarcane cultivars. Honolulu, Hawai‘i: University of Hawaii Press.

    Google Scholar 

  • Lincoln, N. K., A. Kagawa–Viviani, K. Marshall, and P. M. Vitousek. 2017. Observations of sugarcane and knowledge specificity in traditional Hawaiian cropping systems. In: Sugarcane production systems, uses, and economic impact, ed., R. Murphy, 273–282. Hauppauge, New York: Nova Science Publishers.

    Google Scholar 

  • Lincoln, N. K., J. Rossen, P. Vitousek, J. Kahoonei, D. Shapiro, K. Kalawe, M. Pai, K. Marshall, and K. Meheula. 2018. Restoration of ‘āina malo‘o on Hawai‘i Island: Expanding biocultural relationships. Sustainability 10(11):3985.

    Google Scholar 

  • Lincoln, N. K. and P. Vitousek. 2017. Indigenous Polynesian agriculture in Hawaiʻi. In: Oxford Research Encyclopedia of Environmental Science, ed., H. H. Shugart. https://doi.org/10.1093/acrefore/9780199389414.013.376.

  • Lincoln, N. K. and P. Vitousek. 2016. Nitrogen fixation during decomposition of sugarcane (Saccharum officinarum) is an important contribution to nutrient supply in traditional dryland agricultural systems of Hawai‘i. International Journal of Agricultural Sustainability 14(2):214–230.

    Google Scholar 

  • Low, S. 2013. Hawaiki rising: Hokule’a, Nainoa Thompson and the Hawaiian renaissance. Honolulu, Hawai‘i: University of Hawaii Press.

    Google Scholar 

  • Maclennan, C. A. 1997. Hawai‘i turns to sugar: The rise of the plantation centers, 1860–1880. The Hawaiian Journal of History 31:97–125.

    Google Scholar 

  • Maclennan, C. A. 2014. Sovereign sugar: Industry and environment in Hawai‘i. Honolulu, Hawai‘i: University of Hawaii Press.

    Google Scholar 

  • Mangelsdorf, A. J. 1956. Sugar cane breeding: In retrospect and in prospect. Proceedings of the International Society of Sugar Cane Technologists 9:560–575.

    Google Scholar 

  • Marshall, K., C. Koseff, A. Roberts, A. Lindsey, A. Kagawa–Viviani, N. K. Lincoln, and P. Vitousek. 2017. Restoring people and productivity to Puanui: Challenges and opportunities in the restoration of an intensive rain–fed Hawaiian field system. Ecology and Society 22(2):23. https://doi.org/10.5751/ES-09170-220223.

    Article  Google Scholar 

  • Moir, W. W. G. 1932. The native Hawaiian canes. Proceedings of the International Society of Sugar Cane Technologists 4:1–8.

    Google Scholar 

  • Moir, W. W. G. and E. L. Caum. 1928. Brief description of native Hawaiian canes. Honolulu, Hawai‘i: Hawaiian Sugar Planters Association.

    Google Scholar 

  • Pan, Y. B., B. E. Scheffler, and E. P. Richard, Jr. 2007. High–throughput molecular genotyping of commercial sugarcane clones with microsatellite (SSR) markers. Sugar Tech 9(2/3):176–181.

    Google Scholar 

  • R. C. Team. 2013. R: A language and environment for statistical computing. http://www.R–project.org.

  • Reis, V., S. Lee, and C. Kennedy. 2007. Biological nitrogen fixation in sugarcane. In: Associative and endophytic nitrogen–fixing bacteria and cyanobacterial associations, eds., C. Elmerich and W. E. Newton, 213–232. Dordrecht, the Netherlands: Springer.

  • Schenck, S., M. W. Crepeau, K. K. Wu, P. H. Moore, Q. Yu, and R. Ming. 2004. Genetic diversity and relationships in native Hawaiian Saccharum officinarum sugarcane. Journal of Heredity 95(4):327–331.

    CAS  Google Scholar 

  • Seeb, L. W., W. D. Templin, S. Sato, S. Abe, K. Warheit, J. Y. Park, and J. E. Seeb. 2011. Single nucleotide polymorphisms across a species’ range: Implications for conservation studies of Pacific salmon. Molecular Ecology Resources 11:195–217.

    PubMed  Google Scholar 

  • Silva, D. C., J. M. Dos Santos, G. V. de Souza Barbosa, and C. Almeida. 2012. DNA fingerprinting based on simple sequence repeat (SSR) markers in sugarcane clones from the breeding program RIDESA. African Journal of Biotechnology 11(21):4722–4728.

    CAS  Google Scholar 

  • Sloan, A. E. 2013. The foodie phenomenon. Food Technology 67(2):18.

    Google Scholar 

  • Song, J., X. Yang, M. F. Resende Jr., L. G. Neves, J. Todd, J. Zhang, J. C. Comstock, and J. Wang. 2016. Natural allelic variations in highly polyploidy Saccharum complex. Frontiers in Plant Science 7:804.

    PubMed  PubMed Central  Google Scholar 

  • Van Deynze, A., P. Zamora, P. M. Delaux, C. Heitmann, D. Jayaraman, S. Rajasekar, D. Graham, J. Maeda, D. Gibson, and K. D. Schwartz. 2018. Nitrogen fixation in a landrace of maize is supported by a mucilage–associated diazotrophic microbiota. PLoS Biology 16(8):e2006352.

    PubMed  PubMed Central  Google Scholar 

  • Vitrac, I. 2017. Etude des cannes à sucre nobles Saccharum Officinarum en Polynésie Française, recherche d’un cultivar Tahitensis. Dissertation, Department of Organic, Mineral, and Industrial Chemistry, University of French Polynesia.

  • Whistler, W. A. 2009. Plants of the canoe people: An ethnobotanical voyage through Polynesia. Koloa, Hawai‘i: National Tropical Botanical Garden.

    Google Scholar 

  • Wilcox, C. 1997. Sugar water: Hawai‘i’s plantation ditches. Honolulu, Hawai‘i: University of Hawaii Press.

    Google Scholar 

  • Wilfong, G. W. 1883. Varieties of cane. Planters Monthly 2:116–117.

    Google Scholar 

  • Winnicki, E., A. Kagawa–Viviani, K. Perez, T. Radovich, and M. Kantar. 2021. Characterizing the diversity of Hawai‘i sweet potatoes (Ipomoea batatas [L.] Lam.). Economic Botany 75(1):48–62.

    Google Scholar 

  • Winter, K. B. 2012. Kalo [Hawaiian taro, Colocasia esculenta (L.) Schott] varieties: An assessment of nomenclatural synonymy and biodiversity. Ethnobotany Research and Applications 10:423–447.

    Google Scholar 

  • Xing, X., A. M. Koch, A. M. P. Jones, D. Ragone, S. Murch, and M. M. Hart. 2012. Mutualism breakdown in breadfruit domestication. Proceedings of the Royal Society B: Biological Sciences 279(1731):1122–1130.

    PubMed  Google Scholar 

  • You, Q., X. Yang, Z. Peng, M. S. Islam, S. Sood, Z. Luo, J. Comstock, L. Xu, and J. Wang. 2019. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theoretical and Applied Genetics 132(10):2829–2845.

    CAS  PubMed  Google Scholar 

  • Zheng, X. and M. X. Zheng. 2013. Package ‘SNPRelate.’ A package for parallel computing toolset for relatedness and principal component analysis of SNP data.

Download references

Acknowledgements

This work was supported by NIFA HATCH grant 8035–H, the Department of Tropical Plant and Soil Sciences in the College of Tropical Agriculture and Human Resources at the University of Hawai‘i at Manoa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noa Lincoln.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lincoln, N., Anderson, T., Kantar, M. et al. Diversity and Value of Extant Hawaiian Sugarcane (Saccharum officinarum [L.]) Cultivars. Econ Bot 75, 253–267 (2021). https://doi.org/10.1007/s12231-021-09540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12231-021-09540-5

Keywords