Advertisement

Economic Botany

, Volume 73, Issue 2, pp 233–248 | Cite as

Genetic Diversity of Bangladeshi Jackfruit (Artocarpus heterophyllus) over Time and Across Seedling Sources

  • Colby WitherupEmail author
  • M. Iqbal Zuberi
  • Salma Hossain
  • Nyree J. C. ZeregaEmail author
Article

Abstract

Crop genetic diversity is important, but may be lost due to intentional or non-intentional selection processes. Jackfruit (Artocarpus heterophyllus) is the national fruit of Bangladesh, where it displays great morphological diversity, but recent work suggests diversity may be declining. This study tests whether genetic diversity is changing over time and investigates a possible cause—a shift from direct seed planting by tree owners to purchasing seed-propagated saplings from nurseries, a method that has increased in popularity since the 1980s. We measure genetic diversity over time (across both reported tree age and tree size classes) using 13 microsatellite loci for 361 jackfruit individuals collected throughout Bangladesh. We find downward trends in diversity over time (regardless of seedling source), and no change in diversity between owner seed-propagated and nursery seed-propagated sapling trees that were planted since the early 1980s. Jackfruit, long an important crop in South and Southeast Asia, is gaining global popularity. Because it is a long-lived, out-crossing crop, changes in genetic diversity may occur gradually, and locally adapted alleles could be lost in transitioning to commercialized uniform cultivars. It is important to measure and conserve diversity baselines before selection bottlenecks occur in underutilized crops, like jackfruit, on the verge of increased industrialization.

Key Words

Agrobiodiversity germplasm conservation management Moraceae neglected and underutilized crops orphan crops plant genetic resources ethnobotany 

Notes

Acknowledgments

The authors thank the private jackfruit growers of Bangladesh and organizations listed in Table 1 for providing access to study trees and data about tree age and propagation method, Ruby Khan and Abdur Rahim for assistance in the field, Jeremie Fant and Deidre Reitz for assistance in the laboratory, and two anonymous reviewers for insightful comments that improved the manuscript quality.

Funding Information

This study was funded in part by the National Science Foundation (NSF DEB REVSYS 0919119), a Plant Biology and Conservation Award from Northwestern University, and an American Society of Plant Taxonomists Graduate Student Research Grant.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12231_2019_9452_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 24 kb)

Literature Cited

  1. Agrawala, S., T. Ota, A. Uddin Ahmed, J. Smith, and M. van Aalst. 2003. Development and climate change in Bangladesh: Focus on coastal flooding and the Sundarbans. Paris, France: Organisation for Economic Co-operation and Development.Google Scholar
  2. Albrecht, U., M. Bordas, B. Lamb, B. Meyering, and K. D. Bowman. 2017. Influence of propagation method on root architecture and other traits of young citrus rootstock plants. HortScience 52(11):1569–1576.CrossRefGoogle Scholar
  3. Ali, Q. L. 2005. Socio-economic impacts and lessons learning from the management of Social Forestry Programme of Bangladesh, Final report. Dhaka, Bangladesh: Asia Pacific Network for Global Change Research.Google Scholar
  4. Andow, D. A. and C. Zwahlen. 2006. Assessing environmental risks of transgenic plants. Ecology Letters 9(2):196–214.CrossRefGoogle Scholar
  5. Azad, A. K., J. G. Jones, N. Haq. 2007. Assessing morphological and isozyme variation of jackfruit (Artocarpus heterophyllus Lam.) in Bangladesh. Agroforestry Systems 71(2):109–125.CrossRefGoogle Scholar
  6. Bangladesh Bureau of Statistics. 2013. 2012 statistical yearbook of Bangladesh, 32nd edition. Statistics and Information Division, Ministry of Planning Government of the People’s Republic of Bangladesh. Dhaka, Bangladesh: Bangladesh Bureau of Statistics.Google Scholar
  7. Byrne, P. F., G. M. Volk, C. Gardner, M. A. Gore, P. W. Simon, and S. Smith. 2018. Sustaining the future of plant breeding: The critical role of the USDA-ARS National Plant Germplasm System. Crop Science 58(2):451–468.CrossRefGoogle Scholar
  8. Campbell, R. J. and N. Ledesma. 2003. The exotic jackfruit. Coral Gables, Florida: Fairchild Tropical Botanic Garden.Google Scholar
  9. Chen, L. J., D. S. Lee, Z. P. Song, H. S. Suh, and B. Lu. 2004. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany 93(1):67–73.CrossRefPubMedCentralGoogle Scholar
  10. Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W. T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C. G. Menéndez, J. Räisänen, A. Rinke, A. Sarr, and P. Whetton. 2007. Regional climate projections. In: Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. Cambridge, U.K.: Cambridge University Press.Google Scholar
  11. de Faria, A. F., V. V. de Rosso, and A. Z. Mercadante. 2009. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS. Plant Foods for Human Nutrition 64(2):108–115.CrossRefGoogle Scholar
  12. Dyer, G. A. and J. E. Taylor. 2008. A crop population perspective on maize seed systems in Mexico. Proceedings of the National Academy of Sciences USA 105(2):470–475.CrossRefGoogle Scholar
  13. Dyer, G. A., C. González, D. C. Lopera. 2011. Informal “seed” systems and the management of gene flow in traditional agroecosystems: The case of cassava in Cauca, Colombia. PLoS ONE 6(12):e29067.CrossRefPubMedCentralGoogle Scholar
  14. El-Sawa, S. F. 1998. Pollination and breeding of jackfruit (Artocarpus heterophyllus Lam.) in South Florida. Master of Science thesis, Florida International University. FIU Electronic Theses and Dissertations. 3129.Google Scholar
  15. FAO. 2010. The second report on the state of the world’s plant genetic resources for food and agriculture. Rome, Italy: Food and Agriculture Organization.Google Scholar
  16. Gbègbèlègbè, S. D., J. Lowenberg-DeBoer, R. Adeoti, J. Lusk, and O. Coulibaly. 2015. The estimated ex ante economic impact of Bt cowpea in Niger, Benin and Northern Nigeria. Agricultural Economics 46(4):563–577.CrossRefGoogle Scholar
  17. Golmirzaie, A. M. and R. Ortiz. 2004. Diversity in reproductive characteristics of potato landraces and cultivars for producing true seed. Genetic Resources and Crop Evolution 51(7):759–763.CrossRefGoogle Scholar
  18. Hammer, K. and K. Khoshbakht. 2005. Towards a “red list” for crop plant species. Genetic Resources and Crop Evolution 52(3):249–265.CrossRefGoogle Scholar
  19. Haq, N. 2006. Jackfruit, Artocarpus heterophyllus. Vol. 10: Crops for the future. Southampton, U.K.: International Centre for Underutilised Crops.Google Scholar
  20. Haq, N. and A. Hughes. 2002. Fruits for the future in Asia. Southampton, U.K.: International Centre for Underutilised Crops.Google Scholar
  21. Heal, G., B. Walker, S. Levin, K. Arrow, P. Dasgupta, G. Daily, P. Ehrlich, K. Maler, N. Kautsky, and J. Lubchenco. 2004. Genetic diversity and interdependent crop choices in agriculture. Resource and Energy Economics 26(2):75–184.Google Scholar
  22. Heenkenda, H. M. S. 2014. Better future through fruit crop research. Horana, Sri Lanka: Fruit Research and Development Institute.Google Scholar
  23. Heiser, C. B. 1987. Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37(1):77–81.CrossRefGoogle Scholar
  24. Heywood, V., A. Casas, B. Ford-Lloyd, S. Kell, and N. Maxted. 2007. Conservation and sustainable use of crop wild relatives. Agriculture Ecosystems and Environment 121(3):245–255.CrossRefGoogle Scholar
  25. Hocking, D., A. Hocking, and K. Islam. 1996. Tree farms in Bangladesh: Farmer’ species preferences for homestead trees, survival of new tree planting, and main causes of tree death. Agroforestry Systems 33(3):231–247.CrossRefGoogle Scholar
  26. Hossain, A. K. M. A. 1996. Status report on genetic resources of jackfruit in Bangladesh. Singapore: International Plant Genetic Resources Institute Regional Office.Google Scholar
  27. ICUC. 2003. Fruits for the future: Jackfruit. Factsheet 6. Southampton, U.K.: International Centre for Underutilised Crops.Google Scholar
  28. Jaenicke, H. 2006. Under-utilized crops can play a crucial role in food and livelihood security for the poor. Press Release. Colombo, Sri Lanka: International Centre for Underutilised Crops.Google Scholar
  29. Jagadeesh, S. L., B .S. Reddy, N. Basavaraj, G. S. K. Swamy, K. Gorbal, L. Hegde, G. S. V. Raghavan, and S. T. Kajjidoni. 2007. Inter tree variability for fruit quality in jackfruit selections of Western Ghats of India. Scientiae Horticulturae 112(4):382–387.Google Scholar
  30. Jarrett, F. M. 1959. Studies in Artocarpus and allied genera, III. A revision of Artocarpus subgenus Artocarpus. Journal of Arnold Arboretum 40:113–155, 298–368.Google Scholar
  31. Kalinowski, S. T. 2004. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conservation Genetics 5:539–543.CrossRefGoogle Scholar
  32. Kanjilal, U. N., P. C. Kanjilal, and A. Das. 1940. Flora of Assam. Published under the Authority of the Government of Assam, India.Google Scholar
  33. Khan, R., N. J. C. Zerega, S. Hossain, and M. I. Zuberi. 2010. Jackfruit diversity in Bangladesh: Land use and artificial selection. Economic Botany 64(2):124–136.CrossRefGoogle Scholar
  34. Khoury, C. K., A. D. Bjorkman, H. Dempewolf, J. Ramirez-Villegas, L. Guarino, A. Jarvis, L. H. Rieseberg, and P. C. Struik. 2014. Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences USA 111(11):4001–4006.CrossRefGoogle Scholar
  35. Krishna, V. V. and M. Qaim. 2008. Potential impacts of Bt eggplant on economic surplus and farmers’ health in India. Agricultural Economics 38(2):167–180.CrossRefGoogle Scholar
  36. Largeman-Roth, F. 2017. Jackfruit: This BBQ pulled “pork” is the healthy hot food trend you need to try. The Today Show. https://www.today.com/food/what-jackfruit-how-eat-it-bbq-pulled-pork-recipe-t106938 (21 August 2017).
  37. Le Clerc, V., V. Cadot, M. Canadas, J. Lallemand, D. Guèrin, and F. Boulineau. 2006. Indicators to assess temporal genetic diversity in the French Catalogue: No losses for maize and peas. Theoretical and Applied Genetics 113(7):1197–1209.CrossRefGoogle Scholar
  38. Lieberman, D., M. Lieberman, G. Hartshorn, and R. Peralta. 1985. Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. Journal of Tropical Ecology 1:97–109.CrossRefGoogle Scholar
  39. Lukaszkiewicz, J., M. Kosmala, M. Chrapka, and J. Borowski. 2005. Determining the age of streetside Tilia cordata trees with a DBH-based model. Journal of Arboriculture 31(6):280–284.Google Scholar
  40. Mir, R. R., J. Kumar, H. S. Balyan, and P. K. Gupta. 2012. A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genetic Resources and Crop Evolution 59(5):717–726.CrossRefGoogle Scholar
  41. Moon, H. S., J. S. Nicholson, A. Heineman, K. Lion, R. van der Hoeven, A. J. Hayes, and R. S. Lewis. 2009. Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Science 49:498–508.CrossRefGoogle Scholar
  42. Orwig, J. 2015. Experts are hailing this exotic fruit that tastes like pulled pork as a “miracle” crop, which could save millions from starvation. Business Insider. http://www.businessinsider.com/this-miracle-fruit-tastes-like-pulled-pork-2015-8 (21 August 2017).
  43. Peakall, R. and P. E. Smouse. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288–295.CrossRefGoogle Scholar
  44. Petit, R. J. and A. Hampe. 2006. Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution, and Systematics 37:187–214.CrossRefGoogle Scholar
  45. Plotly Technologies Inc. 2015. Collaborative data science. Montréal, Canada: Plotly Technologies, Inc. Google Scholar
  46. Pujol, B., F. Renoux, M. Elias, L. Rival, and D. McKey. 2007. The unappreciated ecology of landrace populations: Conservation consequences of soil seed banks in cassava. Biological Conservation 136:541–551.CrossRefGoogle Scholar
  47. Pushpakumara, D. K. N. G., H. M. S. Heenkenda, B. Marambe, R. H. G. Ranil, B. V. R. Punyawardena, J. Weerahewa, G. L. L. P. Silva, D. Hunter, and J. Rizvi. 2016. Kandyan home gardens: A time-tested good practice from Sri Lanka for conserving tropical fruit tree diversity. In: Tropical fruit tree diversity: Good practices for in situ and on-farm conservation, eds. B. Sthapit, H. A. H. Lamers, R. V. Ramanatha, and A. Bailey. New York, USA: Bioversity International.Google Scholar
  48. Quddus, M. A. 2011. The cropland agroforestry experiences of the Village and Farm Forestry Project in northwest Bangladesh. Gazipur, Bangladesh: Proceedings of National Workshop on Agroforestry, 229–239.Google Scholar
  49. R Development Core Team. 2009. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  50. Ragone, D. 1997. Breadfruit. Artocarpus altilis (Parkinson) Fosberg. Promoting the conservation and use of underutilized and neglected crops series. Vol. 10. Rome, Italy: International Plant Genetic Resources.Google Scholar
  51. Rahman, M. L. and R. K. Talukder. 2001. Interlinkages of agricultural diversification in Bangladesh. MAP Focus Study Series No. 9. Dhaka, Bangladesh: Centre on Integrated Rural Development for Asia and the Pacific.Google Scholar
  52. Rahman, A. K. M. M., N. Nahar, A. J. Mian, and M. Mosihuzzaman. 1999. Variation of carbohydrate composition of two forms of fruit from jack tree (Artocarpus heterophyllus L) with maturity and climatic conditions. Food Chemistry 65(1):91–97.CrossRefGoogle Scholar
  53. Rajan, S., R. Kishore, S. Ahmad, and Vijay. 2013. Maiku Lai: Finding the balance between commercial and seedling trees in Sarsanda. In: Custodian farmers of agricultural biodiversity: Selected profiles from south and south east Asia, Proceedings of the Workshop on Custodian Farmers of Agricultural Biodiversity, eds. B. R. Sthapit, H. Lamers, and R. V. Ramanatha. New Delhi, India: Bioversity International.Google Scholar
  54. Rajan, S., H. A. H. Lamers, and B. Lal. 2016. A set of interconnected practices which enhance and conserve mango diversity in Malihabad, India. In: Tropical fruit tree diversity: Good practices for in situ and on-farm conservation, eds. B. Sthapit, H. A. H. Lamers, V. Ramanatha Rao, and A. Bailey. New York: Bioversity International.Google Scholar
  55. Reif, J., S. Hamrit, M. Heckenberger, W. Schipprack, H. Maurer, M. Bohn, and A. Melchinger. 2005a. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theoretical and Applied Genetics 111(5):838–845.CrossRefGoogle Scholar
  56. Reif, J., P. Zhang, S. Dreisigacker, M. L. Warburton, M. van Ginkel, D. Hoisington, M. Bohn, and A. E. Melchinger. 2005b. Wheat genetic diversity trends during domestication and breeding. Theoretical Applied and Genetics 110(5):859–864.CrossRefGoogle Scholar
  57. Schnell, R. J., C. T. Olano, R. J. Campbell, and J. S. Brown. 2001. AFLP analysis of genetic diversity within a jackfruit germplasm collection. Scientiae Horticulturae 91(3–4):261–274.CrossRefGoogle Scholar
  58. Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18:233–234.CrossRefGoogle Scholar
  59. Shyamalamma S., S. B. C. Chandra, M. Hegde, and P. Naryanswamy. 2008. Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length polymorphism markers. Genetics and Molecular Research 7(3):645–656.CrossRefGoogle Scholar
  60. Smith, N. J. H. and R. E. Schultes. 1990. Deforestation and shrinking crop gene-pools in Amazonia. Environmental Conservation 17(3):227–234.CrossRefGoogle Scholar
  61. Sthapit, B., H. A. H. Lamers, R. V. Ramanatha, A. Bailey, P. Sajise, and P. Quek. 2016. On-farm and in situ conservation of tropical fruit tree diversity: Context and conceptual framework. In: Tropical fruit tree diversity: Good practices for in situ and on-farm conservation, eds. B. Sthapit, H. A. H. Lamers, R. V. Ramanatha, and A. Bailey, 1–22. New York: Bioversity International.CrossRefGoogle Scholar
  62. Szpiech, Z. A., M. Jakobsson, and N. A. Rosenberg. 2008. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21):2498–2504.CrossRefPubMedCentralGoogle Scholar
  63. van de Wouw, M., C. Kik, T. van Hintum, R. van Treuren, and B. Visser. 2010a. Genetic erosion in crops: Concept, research results and challenges. Plant Genetic Resources 8(1):1–15.CrossRefGoogle Scholar
  64. van de Wouw, M., T. van Hintum, C. Kik, R. van Treuren, and B. Visser. 2010b. Genetic diversity trends in twentieth century crop cultivars: A meta analysis. Theoretical and Applied Genetics 120(6):1241–1252.CrossRefGoogle Scholar
  65. Van Esbroeck, G. A., D. T. Bowman, D. S. Calhoun, and O. L. May. 1998. Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Science 38(1):33–37.CrossRefGoogle Scholar
  66. Varshney, K., J. C. Glaszmann, H. Leung, and J. M. Ribaut. 2010. More genomic resources for less-studied crops. Trends in Biotechnology 289(9):452–460.CrossRefGoogle Scholar
  67. Witherup, C. 2013. Genetic diversity of Bangladeshi jackfruit (Artocarpus heterophyllus, Moraceae). Master’s thesis, Northwestern University, Evanston, Illinois. Google Scholar
  68. Witherup, C., D. Ragone, T. Wiesner-Hanks, B. Irish, B. Scheffler, S. Simpson, F. Zee, M. I. Zuberi, and N. J. C. Zerega. 2013. Development of microsatellite loci in Artocarpus altilis (Moraceae) and cross-amplification in congeneric species. Application in Plant Sciences 1(7):1200423.CrossRefGoogle Scholar
  69. Ying-zhi, L., Q. Mao, F. Feng, and C. H. Ye. 2010. Genetic diversity within a jackfruit (Artocarpus heterophyllus Lam.) germplasm collection in China using AFLP markers. Agriculture Sciences in China 9(9):1263–1270.CrossRefGoogle Scholar
  70. Zerega, N. J. C., M. N. Supardi, and T. J. Motley. 2010. Phylogeny and recircumscription of Artocarpeae (Moraceae) with a focus on Artocarpus. Systematic Botany 35(4):766–783.CrossRefGoogle Scholar
  71. Zerega, N. J. C., T. Wiesner-Hanks, D. Ragone, B. Irish, B. Scheffler, S. Simpson, and F. Zee. 2015. Diversity of the breadfruit complex (Artocarpus, Moraceae): Genetic characterization of critical germplasm. Tree Genetics and Genomes. 11: 4.  https://doi.org/10.1007/s11295-014-0824-z.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2019

Authors and Affiliations

  1. 1.Plant Biology and ConservationNorthwestern UniversityEvanstonUSA
  2. 2.Department of Plant ScienceChicago Botanic GardenGlencoeUSA
  3. 3.Environmental ScienceGono Bishwabidyalay UniversitySavarBangladesh

Personalised recommendations