Advertisement

Economic Botany

, Volume 71, Issue 4, pp 330–341 | Cite as

Is It Still Necessary to Continue to Collect Crop Genetic Resources in the Mediterranean Area? A Case Study in Catalonia

  • J. Casals
  • F. Casañas
  • J. Simó
Article

Abstract

Crop genetic resources have been extensively collected in Europe in the last century, creating large, publicly available ex situ collections. While this huge genetic diversity is often underutilized, in recent decades, several initiatives have emerged at the local level to collect germplasm cultivated on farm. Uncoordinated actors often carry out these collecting missions without considering previously collected data. To explore whether new collecting missions are likely to be worthwhile, we studied the crop genetic resources conservation network in Catalonia by analyzing the passport data and geographical distribution of germplasm stored in seed banks. Moreover, to determine whether this germplasm was representative of the diversity cultivated on farm, we performed new collecting missions in four randomly selected areas in the European Union’s Natura 2000 network and compared the results with the ex situ databases. Seed banks currently hold a large germplasm collection (2931 accessions), although most materials are conserved in private collections without regulated systems for seed regeneration and are not present as duplicates in the National Inventory. One important shortcoming of the ex situ network is that the germplasm conserved ex situ shows a low geographical coverage, representing only 35.3% of the municipalities in Catalonia. Our new missions allowed us to collect 234 accessions, mostly tomatoes (17.5%) and beans (16.2%). The ecological indicators’ richness (both at species (S) and variety (V) levels), total abundance (A), and the Shannon-Weaver diversity index calculated at species (H2, considering the different accessions of each variety as a single population) and variety levels (H3, considering the intra-varietal genetic diversity) were higher in the newly collected germplasm than in the ex situ collections, suggesting that seed banks do not accurately represent the genetic diversity still cultivated on farm. Moreover, some important landraces from each area were absent or underrepresented in the ex situ collections. Thus, it is necessary to continue to devote efforts to collecting germplasm; better organization between actors and targeting specific species/varieties can increase the efficiency of new collecting missions. As a conclusion, we propose different criteria to guide new missions and to improve the network’s conservation activities.

Key Words

Landrace horticultural crops agrobiodiversity ex situ conservation on-farm conservation germplasm bank ethnobotany. 

Notes

Acknowledgements

We are grateful to the managers of the germplasm banks that have collaborated in this study. This work was partly funded by grants of Fundación Biodiversidad via the project “Recovering, through use, agrobiodiversity in natural areas of Natura 2000 network.”

Literature Cited

  1. Almirall, A., L. Bosch, R. Romero del Castillo, A. Rivera and F. Casañas. 2010. ‘Croscat’ common bean (Phaseolus vulgaris L.), a prototypical cultivar within the ‘Tavella Brisa’ type. HortScience 45(3): 432–433.Google Scholar
  2. Berg, T. 2009. Landraces and folk varieties: A conceptual reappraisal of terminology. Euphytica 166(3): 423–430.CrossRefGoogle Scholar
  3. Calvet-Mir, L., M. Calvet-Mir, L. Vaqué-Nuñez, and V. Reyes-García. 2011. Landraces in situ conservation: A case study in high-mountain home gardens in Vall Fosca, Catalan Pyrenees, Iberian Peninsula. Economic Botany 65(2): 146.CrossRefGoogle Scholar
  4. Casals, J., L. Bosch, F. Casanas, J. Cebolla, and F. Nuez. 2010. Montgri, a cultivar within the montserrat tomato type. HortScience 45(12): 1885–1886.Google Scholar
  5. Casals, J., L. Pascual, J. Canizares, J. Cebolla-Cornejo, F. Casanas, and F. Nuez. 2011. The risks of success in quality vegetable markets: possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Scientia Horticulturae 130(1): 78–84.Google Scholar
  6. Casals, J., L. Pascual, J. Canizares, J. Cebolla-Cornejo, F. Casanas, and F. Nuez. 2012. Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution 59(2): 219–229.CrossRefGoogle Scholar
  7. Casañas, F., L. Bosch, E. Sánchez, R. Romero del Castillo, J. Valero, M. Baldi, J. Mestres, and F. Nuez. 1997. Collecting, conservation and variability of Ganxet common bean (Phaseolus vulgaris L.). Plant genetic resources Newsletter 112: 105–106.Google Scholar
  8. Casañas, F., L. Bosch, M. Pujolà, E. Sánchez, X. Sorribas, M. Baldi, and F. Nuez. 1999. Characteristics of a common bean landrace (Phaseolus vulgaris L.) of great culinary value and selection of a commercial inbred line. Journal of the Science of Food and Agriculture 79(5): 693–698.CrossRefGoogle Scholar
  9. Galluzzi, G. and I. López Noriega. 2014. Conservation and use of genetic resources of underutilized crops in the Americas—a continental analysis. Sustainability 6(2): 980–1017.CrossRefGoogle Scholar
  10. Gepts, P. 2006. Plant genetic resources conservation and utilization. Crop Science 46(5): 2278–2292.CrossRefGoogle Scholar
  11. Hammer, K. and G. Laghetti. 2005. Genetic erosion – examples from Italy. Genetic Resources and Crop Evolution 52(5): 629–634.CrossRefGoogle Scholar
  12. Hammer, K. and Y. Teklu. 2008. Plant genetic resources: selected issues from genetic erosion to genetic engineering. Journal of Agriculture and Rural Development in the Tropics and Subtropics 109(1): 15–50.Google Scholar
  13. Hammer, K., H. Knupffer, L. Xhuveli, and P. Perrino. 1996. Estimating genetic erosion in landraces - two case studies. Genetic Resources and Crop Evolution 43(4): 329–336.Google Scholar
  14. Hancock, J.F. 2004. Plant evolution and the origin of crop species. Cambridge: CABI Publishing.Google Scholar
  15. van Hintum, T.J., A.H.D. Brown, C. Spillane, and T. Hodkin. 2000. Core collections of plant genetic resources. Rome: IPGRI.Google Scholar
  16. Jarvis, A., K. Williams, D. Williams, L. Guarino, P.J. Caballero, and G. Mottram. 2005. Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genetic Resources and Crop Evolution 52(6): 671–682.CrossRefGoogle Scholar
  17. Jarvis, D.I., A.H.D. Brown, P.H. Cuong, L. Collado-Panduro, L. Latournerie-Moreno, S. Gyawali, T. Tanto, M. Sawadogo, I. Mar, M. Sadiki, N.T.-N. Hue, L. Arias-Reyes, D. Balma, J. Bajracharya, F. Castillo, D. Rijal, L. Belqadi, R. Ranag, S. Saidi, J. Ouedraogo, R. Zangre, K. Rhrib, J.L. Chavez, D.J. Schoen, B. Sthapit, P. De Santis, C. Fadda, and T. Hodgkin. 2008. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proceedings of the National Academy of Sciences of the United States of America 105 (14): 5326–5331.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Laghetti, G., F. Martignano, V. Falco, S. Cifarelli, T. Gladis, and K. Hammer. 2005. “Mugnoli”: A neglected race of Brassica oleracea L. from Salento (Italy). Genetic Resources and Crop Evolution 52(5): 635–639.CrossRefGoogle Scholar
  19. Li, D.Z. and H.W. Pritchard. 2009. The science and economics of ex situ plant conservation. Trends in Plant Science 14 (11): 614–621.CrossRefPubMedGoogle Scholar
  20. Maxted, N., M. Scholten, R. Codd, and B. Ford-Lloyd. 2007. Creation and use of a national inventory of crop wild relatives. Biological Conservation 140 (1–2): 142–159.CrossRefGoogle Scholar
  21. Montesano, V., D. Negro, G. Sarli, G. Logozzo, and P. Spagnoletti Zeuli. 2012. Landraces in inland areas of the Basilicata Region, Italy: Monitoring and perspectives for on farm conservation. Genetic Resources and Crop Evolution 59(5): 701–716.CrossRefGoogle Scholar
  22. Ostermann, O.P. 1998. The need for management of nature conservation sites designated under Natura 2000. Journal of Applied Ecology 35(6): 968–973.CrossRefGoogle Scholar
  23. Peeters, J.P., H.G. Wilkes, and N.W. Galwey. 1990. The use of ecogeographical data in the exploitation of variation from gene banks. Theoretical and Applied Genetics 80(1): 110–112.CrossRefPubMedGoogle Scholar
  24. Pérez-Vega, E., A. Campa, L. De la Rosa, R. Giraldez, and J.J. Ferreira. 2009. Genetic diversity in a core collection established from the main bean genebank in Spain. Crop Science 49(4): 1377–1386.CrossRefGoogle Scholar
  25. Portis, E., M. Baudino, F. Magurno, and S. Lanteri. 2012. Genetic structure and preservation strategies of autochthonous vegetable crop landraces of North-Western Italy. Annals of Applied Biology 160(1): 76–85.CrossRefGoogle Scholar
  26. Prada, D. 2009. Molecular population genetics and agronomic alleles in seed banks: Searching for a needle in a haystack? Journal of Experimental Botany 60(9): 2541–2552.CrossRefPubMedGoogle Scholar
  27. Rivera, A., P.A. Casquero, S. Mayo, A. Almirall, M. Plans, J. Simó, R. Romero del Castillo, and F. Casañas. 2016. Culinary and sensory traits diversity in the Spanish core collection of common beans (Phaseolus vulgaris L.). Spanish Journal of Agricultural Research 14(1): e0701.CrossRefGoogle Scholar
  28. Russell, J., M. Mascher, I.K. Dawson, S. Kyriakidis, C. Calixto, F. Freund, M. Bayer, I. Milne, T. Marshall-Griffiths, S. Heinen, A. Hofstad, R. Sharma, A. Himmelbach, M. Knauft, M. van Zonneveld, J.W.S. Brown, K. Schmid, B. Kilian, G.J. Muehlbauer, N. Stein, and R. Waugh. 2016. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics 48: 1024–1030.CrossRefPubMedGoogle Scholar
  29. Sanchez, E., A. Sifres, F. Casañas, and F. Nuez. 2008. The endangered future of organoleptically prestigious European landraces: ganxet bean (Phaseolus vulgaris L.) as an example of a crop originating in the Americas. Genetic Resources and Crop Evolution 55(1): 45–52.CrossRefGoogle Scholar
  30. Simó, J., R.R. del Castillo, A. Almirall, and F. Casañas. 2012. ‘Roquerola’ and ‘Montferri’, first improved onion (Allium cepa L.) cultivars for “Calçots” production. HortScience 47(6): 801–802.Google Scholar
  31. Sinesio, F., E. Moneta, and M. Peparaio. 2007. Sensory characteristics of traditional field grown tomato genotypes in Southern Italy. Journal of Food Quality 30(6): 878–895.CrossRefGoogle Scholar
  32. Tanksley, S.D. and S.R. McCouch. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277(5329): 1063–1066.CrossRefPubMedGoogle Scholar
  33. Thomas, K., R. Thanopoulos, H. Knüpffer, and P. Bebeli. 2012. Plant genetic resources of Lemnos (Greece), an isolated island in the Northern Aegean Sea, with emphasis on landraces. Genetic Resources and Crop Evolution 59(7): 1417–1440.CrossRefGoogle Scholar
  34. Thormann, I., H. Gaisberger, F. Mattei, L. Snook, and E. Arnaud. 2012. Digitization and online availability of original collecting mission data to improve data quality and enhance the conservation and use of plant genetic resources. Genetic Resources and Crop Evolution 59(5): 635–644.CrossRefGoogle Scholar
  35. Veteläinen, M. and N. Maxted. 2009. European landraces: On-farm conservation, management and use. Rome: Bioversity International.Google Scholar
  36. van de Wouw, M., C. Kik, T. van Hintum, R. van Treuren, and B. Visser. 2010. Genetic erosion in crops: Concept, research results and challenges. Plant Genetic Resources-Characterization and Utilization 8(1): 1–15.CrossRefGoogle Scholar
  37. Zeven, A.C. 1998. Landraces: A review of definitions and classifications. Euphytica 104(2): 127–139.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2017

Authors and Affiliations

  1. 1.Miquel Agustí FoundationCampus del Baix LlobregatCastelldefelsSpain
  2. 2.Department of Agri-Food Engineering and BiotechnologyPolytechnic University of Catalonia, Campus del Baix LlobregatCastelldefelsSpain

Personalised recommendations