Economic Botany

, Volume 67, Issue 2, pp 98–109 | Cite as

Variation of Kernel Anthocyanin and Carotenoid Pigment Content in USA/Mexico Borderland Land Races of Maize

  • Si Hwan Ryu
  • Lindsay Werth
  • Suzanne Nelson
  • Joseph C. Scheerens
  • Richard C. Pratt
Article

Abstract

Variation of Kernel Anthocyanin and Carotenoid Pigment Content in USA/Mexico Borderland Land Races of Maize. Maize is the only major cereal crop that displays abundant variation for health-promoting carotenoid and anthocyanin pigments. Traditional farmers in the USA/Mexico Borderland region utilize many land race varieties with diverse kernel characteristics reflecting enculturated preferences, including color. Food prepared using these varieties may provide benefits to human health, but the kernel pigment content, and grain physical and compositional traits, have not been characterized. Seed from 48 diverse accessions representing 18 races of maize originating from the Borderland region were obtained from Native Seeds/SEARCH and planted in replicated nurseries at two locations (Ohio and Arizona) in 2008. We visually determined kernel color and quantified total carotenoid and anthocyanin pigment content of samples obtained from these nurseries using spectrophotometric analysis. Nonpigmented (white) followed by yellow kernel colors were most abundant. Populations with high carotenoid pigment content (i.e., above 40 μg/g) were not observed, whereas many accessions produced ears with mixtures of red, purple, and blue kernels containing anthocyanin pigments. A wide range in anthocyanin pigment content was observed across and within populations—some kernels displayed concentrations above 50 mg/100 g. Kernel hardness was determined visually, and protein and oil content were determined by near-infrared spectrometric analysis. Flinty (hard) followed by floury (soft) kernel types were most abundant. Carotenoid content was highest in orange- and yellow-colored pop-type kernels. Anthocyanin content was highest in blue- and purple-colored floury and flint-type kernels. Kernel weight, protein, oil, and carotenoid content were significantly affected by location. Preservation of culturally-adapted varieties with diverse kernel pigments is important not only because of their genetic diversity—they also may contribute to enhanced human health and nutrition.

Key Words

Maize carotenoid anthocyanin phytonutrient borderland diversity germplasm land race health nutrition culturally based food preferences 

Résumé

Variación del contenido de pigmentos antocyaninos y carotenoides en maíz. El maíz es el único cereal principal que contiene abundante variación en los carotenoides y antocianinas, pigmentos que promueven la buena salud. Los campesinos tradicionales en la región fronteriza de E.E.U.U y México utilizan muchas variedades de razas nativas con características de grano diversas, incluyendo el color, que reflejan preferencias culturales. Los alimentos preparados con estas variedades pueden proporcionar beneficios a la salud humana, pero el contenido del pigmento y los rasgos físicos y de composición del grano no han sido caracterizados. Semillas de 48 accesiones diversos representando 18 razas procedente de la región fronteriza fueron obtenidas de Native Seeds/SEARCH y sembradas en semilleros de manera replicada en dos localidades (Ohio y Arizona) en el año 2008. El color de grano fue determinado visualmente y la cantidad total de carotenoides y antocianinas fue medida usando análisis espectrofotométrico. Los granos mas abundantes fueron granos sin pigmento (blanco), seguidos por amarillos. No se observaron poblaciones con contenido alto de carotenoides (mas de 40 μg/g), pero muchas accesiones produjeron mazorcas con mezclas de granos rojos, púrpura, y azules que contienen los pigmentos antocianinas. Se observó una gran variedad en el contenido de pigmentos antocianinas a través y dentro de poblaciones-—algunos granos con concentraciones por encima de 50 mg/100 g. La dureza del grano fue determinada visualmente y el contenido de proteína y aceite fueron determinados usando análisis espectrofotométrico infrarrojo cercano. Los granos mas abundantes fueron cristalinos (duros), seguidos por harinosos (blandos). El contenido de carotenoides fue mas alto en granos amarillos y anaranjado de tipo palomitas. El contenido de antocyaninos fue mayor en granos de color azul y púrpura de tipo cristalino o harinoso. El peso de los granos y contenido de proteína, aceite y carotenoides dependió considerablemente en la localidad donde se sembró el maíz. La conservación de variedades culturalmente adaptadas con diversos pigmentos de grano es importante no solo para preservar diversidad genética sino porque puede contribuir a una mejor nutrición y salud humana.

Literature Cited

  1. Abdel-Aal, E.-S. M., J. C. Young, and I. Rabalski. 2006. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry 54:4696–4704.CrossRefGoogle Scholar
  2. Adams, K. R., C. M. Meegan, S. G. Ortman, R. E. Howell, L. Werth, D. A. Muenchrath, M. K. O’Neill, and C. A. C. Gardner. 2006. MAIS (Maize of American Indigenous Societies) Southwest: Ear descriptions and traits that distinguish 27 morphologically distinct groups of 123 historic USDA maize accessions and data relevant to archeological subsistence models. http://farmingtonsc.nmsu.edu/documents/maissouthwestcopyrightedmanuscript1.pdf
  3. Barker, D., J. Beuerlein, A. Dorrance, D. Eckert, B. Eisley, R. Hammond, E. Lentz, P. Lipps, M. Loux, R. Mullen, M. Sulc, P. Thomison, and M. Watson. 2005. Ohio agronomy guide. 14th ed. Bulletin 472. Columbus: The Ohio State University Extension.Google Scholar
  4. Chitchumroonchokchai, C., J. A. Bomser, J. E. Glamm, and M. L. Failla. 2004. Xanthophylls and {alpha}-tocopherol decrease UVB-induced lipid peroxidation and stress signaling in human lens epithelial cells. Journal of Nutrition 134:3225–3232.PubMedGoogle Scholar
  5. DellaPenna, D. and B. J. Pogson. 2006. Vitamin synthesis in plants: Tocopherols and carotenoids. Annual Review of Plant Biology 57:711–738.PubMedCrossRefGoogle Scholar
  6. de Pascual-Teresa, S. and M. T. Sanchez-Ballesta. 2008. Anthocyanins from plant to health. Phytochemistry Reviews 7:281–299.CrossRefGoogle Scholar
  7. Dickerson, G. W. 2003. Specialty corns. Guide H-232. College of Agriculture and Home Economics, New Mexico State University, Las Cruces.Google Scholar
  8. Gould, K., K. Davies, and C. Winefield. 2009. Anthocyanins: Biosynthesis, functions and applications. New York: Springer-Verlag.Google Scholar
  9. Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57:761–780.PubMedCrossRefGoogle Scholar
  10. Jing, P., J. A. Bomser, S. J. Schwartz, J. He, B. A. Magnuson, and M. M. Giusti. 2008. Structure-Function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. Journal of Agricultural and Food Chemistry 56:9391–9398.PubMedCrossRefGoogle Scholar
  11. Kimura, M., C. N. Kobori, D. B. Rodriguez-Amaya, and P. Nestel. 2007. Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chemistry 100:1734–1746.CrossRefGoogle Scholar
  12. Kurilich, A. C. and J. A. Juvik. 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. Journal of Agricultural and Food Chemistry 47:1948–1955.PubMedCrossRefGoogle Scholar
  13. Li, C., H. Kim, S. Won, H. Min, K. Park, J. Park, M. Ahn, and H. Rhee. 2008. Corn husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry 56:11413–11416.PubMedCrossRefGoogle Scholar
  14. Lieberman, S. 2007. The antioxidant power of purple corn. Alternative and Complementary Therapies 13:107–110.CrossRefGoogle Scholar
  15. Loux, M. M., J. M. Stachler, W. G. Johnson, G. R. W. Nice, and T. T. Bauman. 2007. Weedcontrol guide for Ohio field crops. Bulletin 789. Columbus: The Ohio State University Extension. http://ohioline.osu.edu/b789/ (26 December 2010).
  16. Menkir, A., W. Liu, W. S. White, B. Maziya-Dixon, and T. Rocheford. 2008. Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chemistry 109:521–529.CrossRefGoogle Scholar
  17. Moreno, Y. S., G. S. Sanchez, D. R. Hernandez, and N. R. Lobato. 2005. Characterization of anthocyanin extracts from maize kernels. Journal of Chromatographic Science 43:483–487.PubMedCrossRefGoogle Scholar
  18. Murphy, M. M., L. M. Barraj, D. Herman, X. Bi, R. Cheatham, and R. K. Randolph. 2012. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. Journal of the Academy of Nutrition and Dietetics 112:222–229. Native Seeds/SEARCH. 2011. Native Seeds/Southwestern Endangered Aridland Resource Clearing House. http://www.nativeseeds.org/ (16 December 2011).Google Scholar
  19. Pratt, R. C. 1994. Registration of OHS12(C1) maize germplasm. Crop Science 34:1419.CrossRefGoogle Scholar
  20. SAS Institute, Inc. 2002. SAS system. Version 9.1. Cary, North Carolina: SAS Institute, Inc.Google Scholar
  21. Schaub, P., P. Beyer, S. Islam, and T. Rocheford. 2004. Maize quick carotenoid extraction protocol. http://www.cropsci.illinois.edu/faculty/rocheford/quickcarotenoid_analysis_protocol.pdf_.
  22. Speakman, K. and A. Barlow. 2011. Community visioning project. In: State of native foodsheds. A special publication of Sabores Sin Frontreras/ Flavors Without Borders of the Southwest Center with Edible Communities, eds. G. Nabhan and R. Fitzsimmons, 26–28.Google Scholar
  23. Steyn W. J., S. J. E. Wand, D. M. Holcroft, and G. Jacobs. 2002. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytologist 155:349–361.CrossRefGoogle Scholar
  24. Tsuda, T., F. Horio, K. Uchida, H. Aoki, and T. Osawa. 2003. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. Journal of Nutrition 133:2125–2130.PubMedGoogle Scholar
  25. Walter, M. H. and D. Strack. 2011. Carotenoids and their cleavage products: Biosynthesis and functions. Natural Products Reports 28:663–692.CrossRefGoogle Scholar
  26. Werth, L. C. 2007. Characterization and classification of Native American maize landraces from the Southwestern United States. M.S. thesis, Iowa State University, Ames, Iowa.Google Scholar
  27. Wong, J. C., R. J. Lambert, E. T. Wurtzel, and T. R. Rocheford. 2004. QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theoretical and Applied Genetics 108:349–359.PubMedCrossRefGoogle Scholar
  28. Wurtzel, E. T. 2004. Genomics, genetics, and biochemistry of maize carotenoid biosynthesis. Recent Advances in Phytochemistry 38:85–110.CrossRefGoogle Scholar
  29. Xolocotzi, E. H. 1985. Maize and man in the greater Southwest. Economic Botany 39:416–430.CrossRefGoogle Scholar
  30. Yeum, K.-J. and R. M. Russell. 2002. Carotenoid biovavailability and bioconversion. Annual Review of Nutrition 22:483–504.PubMedCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2013

Authors and Affiliations

  • Si Hwan Ryu
    • 1
  • Lindsay Werth
    • 2
  • Suzanne Nelson
    • 2
  • Joseph C. Scheerens
    • 1
  • Richard C. Pratt
    • 1
    • 3
  1. 1.Department of Horticulture and Crop ScienceThe Ohio State University, Ohio Agricultural Research and Development CenterWoosterUSA
  2. 2.Native Seeds/SEARCHTucsonUSA
  3. 3.Department of Plant and Environmental SciencesCollege of Agricultural, Consumer, and Environmental SciencesLas CrucesUSA

Personalised recommendations