Skip to main content
Log in

Diploid Interspecific Recombinant Inbred Lines for Genetic Mapping in Potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Recombinant inbred line (RIL) populations are powerful mapping tools in many crops but have not yet been created using cultivated potato germplasm. We crossed the doubled monoploid cultivated clone DM 1–3 with the self-compatible diploid inbred wild clone M6 to create a diploid F1 hybrid. One F1 plant was self- pollinated to generate a phenotypically diverse F2 population, which was selfed to create 87 RILs. This is the first report of a RIL population developed from a cultivated x wild hybrid in potato. Poor fertility was a significant challenge in creating RILs. Nevertheless, we generated inbred lines that ranged from high to low fertility, vigor, and tuber production. F6 RILs ranged from 98 to 68% homozygosity, based on 2884 SNP markers. Considering the phenotypic variability between the two parents and among the RILs, we expect the RIL population to be valuable for mapping traits important to the potato industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeytilakarathna, P. D. 2022. Factors affect to stolon formation and tuberization in potato: a review. Agricultural Reviews 43: 91–97.

    Google Scholar 

  • Bai, Y., and P. Lindhout. 2007. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann. Bot 100: 1085–1094.

    Google Scholar 

  • Bargaz, A., R. M. A. Nassar, M. M. Rady, M. S. Gaballah, S. M. Thompson, M. Brestic, U. Schmidhalter, and M. T. Abdelhamid. 2016. Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency. Journal of Agronomy and Crop Science 202: 497–507.

    Article  CAS  Google Scholar 

  • Barreto, F. S., R. J. Pereira, and R. S. Burton. 2015. Hybrid dysfunction and physiological compensation in gene expression. Molecular Biology and Evolution 32: 613–622.

    Article  CAS  PubMed  Google Scholar 

  • Bethke, P. C., D. A. Halterman, D. M. Francis, J. Jiang, D. S. Douches, A. O. Charkowski, and J. Parsons. 2022. Diploid potatoes as a catalyst for change in the potato industry. Amer J Potato Res 99: 337–357.

    Article  Google Scholar 

  • Beumer, K., and D. Stemerding. 2021. A breeding consortium to realize the potential of hybrid diploid potato for food security. Nature Plants 7: 1530–1532.

    Article  PubMed  Google Scholar 

  • Birhman, R. K., and K. Hosaka. 2000. Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization. Genome 43: 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Broman, K. W. 2005. The genomes of recombinant inbred lines. Genetics 169: 1133–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler, E. S., J. B. Holland, P. J. Bradbury, C. B. Acharya, P. J. Brown, C. Browne, E. Ersoz, S. Flint-Garcia, A. Garcia, J. C. Glaubitz, and M. M. Goodman. 2009. The genetic architecture of maize flowering time. Science 325: 714–718.

    Article  CAS  PubMed  Google Scholar 

  • Burr, B., and F. Burr. 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends in Genetics 7: 55–60.

    CAS  PubMed  Google Scholar 

  • Burton, R. S., R. J. Pereira, and F. S. Barreto. 2013. Cytonuclear genomic interactions and hybrid breakdown. Annual Review of Ecology Evolution and Systematics 44: 281–302.

    Article  Google Scholar 

  • Charlesworth, D., and J. H. Willis. 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10: 783–796.

    Article  CAS  PubMed  Google Scholar 

  • Colomé-Tatché, M., and F. Johannes. 2016. Signatures of Dobzhansky–Muller incompatibilities in the genomes of recombinant inbred lines. Genetics 202: 825–841.

    Article  PubMed  Google Scholar 

  • Crabb, R. 1947. The Hybrid Corn makers: prophets of plenty. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Crow, J. F. 1998. Anecdotal, historical and critical commentaries on genetics 90 years ago: the beginning of hybrid maize. Genetics 3: 923–928.

    Article  Google Scholar 

  • Dai, B., H. Guo, C. Huang, X. Zhang, and Z. Lin. 2016. Genomic heterozygosity and hybrid breakdown in cotton (Gossypium): different traits, different effects. Bmc Genetics 17: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Jong, H., and P. R. Rowe. 1971. Inbreeding in cultivated diploid potatoes. Potato Research 14: 74–83.

    Article  Google Scholar 

  • Dupuis, J., and D. Siegmund. 1999. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151: 373–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison, C. K., and R. S. Burton. 2008. Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution (N Y) 62: 631–638.

    Google Scholar 

  • Endelman, J. B., and S. H. Jansky. 2016. Genetic mapping with an inbred line-derived F2 population in potato. Tag. Theoretical And Applied Genetics 129: 935–943.

    Article  CAS  PubMed  Google Scholar 

  • Felcher, K. J., J. J. Coombs, A. N. Massa, C. N. Hansey, J. P. Hamilton, R. E. Veilleux, C. R. Buell, and D. S. Douches. 2012. Integration of two diploid potato linkage maps with the potato genome sequence. PloS One 7: 4: e36347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman, E., F. Carrari, Y.-S. Liu, A. R. Fernie, and D. Zamir. 2004. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305: 1786–1789.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, R., M. Ohara, K. Okazakl, and Y. Shlmamoto. 1997. The extent of natural cross-pollination in wild soybean (Glycine soja). Journal of Heredity 88: 124–128.

    Article  Google Scholar 

  • Gupta, P. K., P. L. Kulwal, and V. Jaiswal. 2019. Association Mapping in Plants in the Post-GWAS Genomics era. 1st ed. Elsevier Inc.

  • Hawkes, J. G., and J. P. Hjerting. 1969. The Potatoes of Argentina, Brazil, Paraguay, and Uruguay. Oxford University Press.

  • Hosaka, K., and R. E. Hanneman Jr. 1998. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica 99: 191–197.

    Article  Google Scholar 

  • Hosaka, K., and R. Sanetomo. 2020. Creation of a highly homozygous diploid potato using the S locus inhibitor (Sli) gene. Euphytica 216: 169.

    Article  CAS  Google Scholar 

  • Huang, X. Q., T. Huang, G. Z. Hou, L. Li, Y. Hou, and L. H. Lu. 2016. Identification of QTLs for seed quality traits in rapeseed (Brassica napus L.) using recombinant inbred lines (RILs). Euphytica 210: 1–16.

    Article  CAS  Google Scholar 

  • Hwang, A. S., V. L. Pritchard, and S. Edmands. 2016. Recovery from hybrid breakdown in a marine invertebrate is faster, stronger and more repeatable under environmental stress. Journal of Evolutionary Biology: 1–11.

  • Ipsilandis, C., I. Tokatlidis, B. Vafias, and D. Stefanis. 2006. Criteria for developing second cycle hybrids in maize. Asian J Plant Sci 5: 680–685.

    Article  Google Scholar 

  • Jansky, S., Y. Chung, and P. Kittipadukal. 2014. M6: a diploid potato inbred line for use in breeding and genetics research. J Plant Regist 8: 195–199.

    Article  Google Scholar 

  • Jansky, S. H., A. O. Charkowski, D. S. Douches, G. Gusmini, C. Richael, P. C. Bethke, D. M. Spooner, R. G. Novy, H. de Jong, W. S. de Jong, and J. B. Bamberg. 2016. Reinventing potato as a diploid inbred line–based crop. Crop Science 11: 1–11.

    Google Scholar 

  • Johansen-Morris, A. D., and R. G. Latta. 2006. Fitness consequences of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation. Evolution (N Y) 60: 1585–1595.

    CAS  Google Scholar 

  • Kaiser, N. R., G. Billings, J. Coombs, C. R. Buell, F. Enciso-Rodriquez, and D. S. Douches. 2021. Self-fertility and resistance to the Colorado potato beetle (Leptinotarsa decemlineata) in a diploid Solanum chacoense recombinant inbred line population. Crop Science 61: 3392–3414.

    Article  CAS  Google Scholar 

  • Kimbara, J., A. Ohyama, H. Chikano, H. Ito, K. Hosoi, S. Negoro, K. Miyatake, H. Yamaguchi, T. Nunome, H. Fukuoka, and T. Hayashi. 2018. QTL mapping of fruit nutritional and flavor components in tomato (Solanum lycopersicum) using genome-wide SSR markers and recombinant inbred lines (RILs) from an intra-specific cross. Euphytica 214: 1–12.

    Article  CAS  Google Scholar 

  • Kondhare, K. R., A. Kumar, N. S. Patil, N. N. Malankar, K. Saha, and A. K. Banerjee. 2021. Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism. Plant Physiology 187: 1071–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kump, K. L., P. J. Bradbury, R. J. Wisser, E. S. Buckler, A. R. Belcher, M. A. Oropeza-Rosas, J. C. Zwonitzer, S. Kresovich, M. D. McMullen, D. Ware, and P. J. Balint-Kurti. 2011. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nature Genetics 43: 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., S. R. M. Pinson, A. H. Paterson, W. D. Park, and J. W. Stansel. 1997. Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145: 1139–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., M. Guo, Y. Lu, Y. Yang, M. Liu, Q. Zhi, C. Wei, M. Gu, and C. Yan. 2015. Genetic dissection of hybrid breakdown in an indica/japonica cross and fine mapping of a quantitative trait locus qSF-12 in rice (Oryza sativa L). Molecular Breeding: New Strategies in Plant Improvement 35: 1–12.

    Article  Google Scholar 

  • Liberatti, D., G. Rodríguez, R. Zorzoli, and G. Pratta. 2013. Tomato second cycle hybrids differ from parents at three levels of genetic variation. Int J Plant Breed 7: 1–7.

    Google Scholar 

  • Lindhout, P., D. Meijer, T. Schotte, R. C. B. Hutten, R. G. F. Visser, and H. J. van Eck. 2011. Towards F1 hybrid seed potato breeding. Potato Research 54: 301–312.

    Article  Google Scholar 

  • Magoon, M. L., S. Ramanujam, and D. C. Cooper. 1962. Cytogenetical studies in relation to the origin and differentiation of species in the genus Solanum L. Caryologia 15: 151–252.

    Article  Google Scholar 

  • Marathi, B., S. Guleria, T. Mohapatra, R. Parsad, N. Mariappan, V. K. Kurungara, S. S. Atwal, K. V. Prabhu, N. K. Singh, and A. K. Singh. 2012. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L). Bmc Plant Biology 12: 137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsubara, K., E. Yamamoto, R. Mizobuchi, J. I. Yonemaru, T. Yamamoto, H. Kato, and M. Yano. 2015. Hybrid breakdown caused by epistasis-based recessive incompatibility in a cross of rice (Oryza sativa L). Journal of Heredity 106: 113–122.

    Article  PubMed  Google Scholar 

  • Miura, K., E. Yamamoto, Y. M. J, T. Takashp, H. Kitano, M. Matsuoka, and M. Ashikari. 2008. The hybrid breakdown 1 (t) locus induces interspecific hybrid breakdown between rice Oryza sativa cv. Koshihikari and its wild relative O. Nivara. Breeding Science 58: 99–105.

    Article  CAS  Google Scholar 

  • Mohanty, S., J. Kumar, N. Mohanty, G. Gouda, S. K. Pradhan, S. K. Dash, and L. Behera. 2018. Assessment of genetic variability in recombinant inbred lines of rice (Oryza sativa L.) using phenotypic traits and molecular markers. New Agric 1: 1–12.

    Google Scholar 

  • Moreau, C., M. Knox, L. Turner, T. Rayner, J. Thomas, H. Philpott, S. Belcher, K. Fox, N. Ellis, and C. Domoney. 2018. Recombinant inbred lines derived from cultivars of pea for understanding the genetic basis of variation in breeders’ traits. Plant Genet Resour Characterisation Util 16: 424–436.

    Article  Google Scholar 

  • Morishima, H., and P. Barbier. 1990. Mating system and genetic structure of natural populations in wild rice Oryza rufipogon. Plant Species Biology 5: 31–39.

    Article  Google Scholar 

  • Paran, I., I. Goldman, S. D. Tanksley, and D. Zamir. 1995. Recombinant inbred lines for genetic mapping in tomato. Tag. Theoretical And Applied Genetics 90: 542–548.

    Article  CAS  PubMed  Google Scholar 

  • PGS Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.

    Article  Google Scholar 

  • Phumichai, C., and K. Hosaka. 2006. Cryptic improvement for fertility by continuous selfing of diploid potatoes using sli gene. Euphytica 149: 251–258.

    Article  CAS  Google Scholar 

  • Phumichai, C., M. Mori, A. Kobayashi, O. Kamijima, and K. Hosaka. 2005. Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome 48: 977–984.

    Article  CAS  PubMed  Google Scholar 

  • Polania, J., I. M. Rao, C. Cajiao, M. Grajales, M. Rivera, F. Velasquez, B. Raatz, and S. E. Beebe. 2017. Shoot and root traits contribute to drought resistance in recombinant inbred lines of MD 23–24 × SEA 5 of common bean. Frontiers in Plant Science 8: 296.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team. 2023. R: a language and environment for statistical computing. Austria: R Foundation for Statistical Computing. Vienna.

    Google Scholar 

  • Ramu, P., W. Esuma, R. Kawuki, I. Y. Rabbi, C. Egesi, J. V. Bredeson, R. S. Bart, J. Verma, E. S. Buckler, and F. Lu. 2017. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nature Genetics 49: 959–963.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, G. R., G. R. Pratta, R. Zorzoli, and L. A. Picardi. 2006. Recombinant lines obtained from an interspecific cross between Lycopersicon species selected by fruit weight and fruit shelf life. Journal of the American Society for Horticultural Science 131: 651–656.

    Article  Google Scholar 

  • Santa Catarina, R., D. F. M. Cortes, J. C. F. Vettorazzi, de T. P. Poltronieri, de G. B. Barros, F. A. Santana Aredes, A. O. Nunes Azevedo, H. C. C. Ramos, and M. G. Periera. 2019. Combining ability for fruit yield and quality in papaya recombinant inbred lines from the sexual conversion backcrossing. Euphytica 215: 154.

    Article  Google Scholar 

  • Scott, M. F., O. Ladejobi, S. Amer, A. R. Bentley, J. Biernaskie, S. A. Boden, M. Clark, M. Dell’Acqua, L. E. Dixon, C. V. Filippi, and N. Fradgley. 2020. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity 125: 396–416.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen, S. J. M., K. W. Satagopan, G. A. Broman, and Churchill. 2007. R/qtlDesign: inbred line cross experimental design. Mammalian Genome 18: 87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shull, G. 1908. The composition of a field of maize. Journal of Heredity 4: 296–301.

    Article  Google Scholar 

  • Shull, G. 1909. A pureline method of corn breeding. Am Breeders Assoc Rep 5: 51–59.

    Google Scholar 

  • Strygina, K. V., A. V. Kochetov, and E. K. Khestkina. 2019. Genetic control of anthocyanin pigmentation of potato tissues. BMC Genetics 20(suppl 1): 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulli, M., G. Mandolino, M. Sturaro, C. Onofri, G. Diretto, B. Parisi, and G. Guiliano. 2017. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. Plos One 12: e0184143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor, M. 2018. Routes to genetic gain in potato. Nat Plants 4: 631–632.

    Article  PubMed  Google Scholar 

  • Tiwari, S., K. Sl, V. Kumar, B. Singh, A. R. Rao, A. Mithra, SV, V. Rai, A. K. Singh, and N. K. Singh. 2016. Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip. PLoS One 11: 1–19.

    Article  Google Scholar 

  • Uga, Y., Y. Fukuta, R. Ohsawa, and T. Fujimura. 2003. Variations of floral traits in Asian cultivated rice (Oryza sativa L.) and its wild relatives (O. Rufipogon Griff). Breeding Science 53: 345–352.

    Article  Google Scholar 

  • Voorrips, R. E., G. Gort, and B. Vosman. 2011. Genotype calling in tetraploid species from bi-allelic marker data using mixture models. Bmc Bioinformatics 12: 1–11.

    Article  Google Scholar 

  • Vos, P. G., J. G. Uitdewilligen, R. E. Voorrips, R. G. Visser, and H. J. van Eck. 2015. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Tag. Theoretical And Applied Genetics 128: 2387–2401.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., A. Wang, X. Huang, Q. Zhao, G. Dong, Q. Qian, T. Sang, and B. Han. 2011. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Tag. Theoretical And Applied Genetics 122: 327–340.

    Article  PubMed  Google Scholar 

  • Xu, Y., P. Li, Z. Yang, and C. Xu. 2017. Genetic mapping of quantitative trait loci in crops. Crop J 5: 175–184.

    Article  Google Scholar 

  • Yashpal, D. R., S. Rathod, A. Chandra, R. R. Kumar, Yadav, and A. Talukdar. 2019. Deploying inter-specific recombinant inbred lines to map qtls for yield-related traits in soybean. Indian J Genet Plant Breed 79: 693–703.

    CAS  Google Scholar 

  • Yu, J., J. B. Holland, M. D. McMullen, and E. S. Buckler. 2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178: 539–551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., X. Liu, L. Chen, Y. Fu, and C. Li et al. 2018. Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) Recombinant inbred lines. Plant and Soil 431: 245–255.

    Article  CAS  Google Scholar 

  • Zhou, Z., C. Zhang, Y. Zhou, Z. Hao, Z. Wang, X. Zing, H. Di, M. Li, D. Zhang, H. Yong, And, and S. Zhang. 2016. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Bmc Genomics 17: 1–15.

    Article  CAS  Google Scholar 

  • Zhou, L., M. Zou, K. Deng, C. Xia, S. Jiang, C. Zhang, Y. Ma, X. Cong, M. He, T. Na, J. Wang, Z. Xia, and F. Wang. 2023. Insights into the genetic determination of tuber shape and eye depth in potato natural population based on autotetraploid potato genome. Frontiers in Plant Science 14: 1080666.

  • Zych, K., G. Gort, C. A. Maliepaard, R. C. Jansen, and R. E. Voorrips. 2019. FitTetra 2.0–improved genotype calling for tetraploids with multiple population and parental data support. BMC Bioinformatics 20: 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

The contribution of Ryan Alpers toward the development of the RILs is gratefully acknowledged. Mr. Alpers’ M.S. thesis project generated and evaluated several inbreds from DM x M6 and other populations.

Author information

Authors and Affiliations

Authors

Contributions

Study design: SJ. Population development and phenotyping: SJ, AH. Genetic analysis: JE, SJ. Writing– Original Draft: SJ, JE. Writing– Review and Editing: SJ, AH, JE.

Corresponding author

Correspondence to Shelley Jansky.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansky, S., Hamernik, A. & Endelman, J.B. Diploid Interspecific Recombinant Inbred Lines for Genetic Mapping in Potato. Am. J. Potato Res. (2024). https://doi.org/10.1007/s12230-024-09953-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12230-024-09953-7

Keywords

Navigation