Abstract
Genome-wide markers enable routine confirmation of whether varieties are true-to-type, and when they are not, to infer their identity. The objective of this study was to determine the basis of a previously described chromosome translocation, tr8-7, which was apparently polymorphic among holdings of the tetraploid potato (Solanum tuberosum L.) cultivar Desiree. Through analysis of publicly available genotype data from North American and European tetraploid potato germplasm, we resolved a longstanding mistaken identity of the United States Potato Genebank holding of Desiree, which is actually a somatic mutant of its maternal parent, cv. Urgenta. Comparison of multiple holdings revealed that tr8-7 was a somatic mutation that occurred at least 25 years ago and was maintained in isolated lineages. Holdings from other institutions lacked tr8-7 and were confirmed as Desiree by trio analyses, suggesting that the mixup affected the United States Potato Genebank and institutions that received Desiree from there. In the face of inevitable mutations and human error, we recommend validation of potato germplasm collections with pedigree and genomic information. To that effect, we provide molecular markers to distinguish the varieties investigated in this study.
Resumen
Los marcadores de todo el genoma permiten la confirmación rutinaria de si las variedades son fieles al tipo, y cuando no lo son, inferir su identidad. El objetivo de este estudio fue determinar la base de una translocación cromosómica previamente descrita, tr8-7, que aparentemente era polimórfica entre las particularidades de la variedad tetraploide de papa (Solanum tuberosum L.) Desiree. A través del análisis de datos de genotipos disponibles públicamente del germoplasma tetraploide de papa de América del Norte y Europa, resolvimos una identidad errónea de largo tiempo de las particularidades de Desiree del Banco de Germoplasma de la Papa de los Estados Unidos, que en realidad es un mutante somático de su progenitor materno, cv. Urgenta. La comparación de múltiples particularidades reveló que tr8-7 era una mutación somática que ocurrió hace al menos 25 años y se mantuvo en linajes aislados. Las particularidades de otras instituciones carecían de tr8-7 y fueron confirmadas como Desiree por análisis triples, lo que sugiere que la confusión afectó al Banco de Germoplasma de la Papa de los Estados Unidos y a las instituciones que recibieron Desiree de allí. Ante las mutaciones inevitables y el error humano, nosotros recomendamos la validación de las colecciones de germoplasma de papa con pedigrí e información genómica. Para ello, proporcionamos marcadores moleculares para distinguir las variedades investigadas en este estudio.
This is a preview of subscription content, access via your institution.





References
Amundson, K.R., B. Ordoñez, M. Santayana, M.L. Nganga, I.M. Henry, M. Bonierbale, A. Khan, E.H. Tan, and L. Comai. 2021. Rare instances of haploid inducer DNA in potato dihaploids and ploidy-dependent genome instability. The Plant Cell 33: 2149–2163. https://doi.org/10.1093/plcell/koab100.
Amundson, K.R., B. Ordoñez, M. Santayana, E.H. Tan, I.M. Henry, E. Mihovilovich, M. Bonierbale, and L. Comai. 2020. Genomic outcomes of haploid induction crosses in potato (Solanum tuberosum L.). Genetics 214: 369–380. https://doi.org/10.1534/genetics.119.302843.
Bao, Z., C. Li, G. Li, P. Wang, Z. Peng, L. Cheng, H. Li, Z. Zhang, Y. Li, W. Huang, M. Ye, D. Dong, Z. Cheng, P. VanderZaag, E. Jacobsen, C.W.B. Bachem, S. Dong, C. Zhang, S. Huang, and Q. Zhou. 2022. Genome architecture and tetrasomic inheritance of autotetraploid potato. Molecular Plant 15: 1211–1226. https://doi.org/10.1016/j.molp.2022.06.009.
Bastien, M., C. Boudhrioua, G. Fortin, and F. Belzile. 2018. Exploring the potential and limitations of genotyping-by-sequencing for SNP discovery and genotyping in tetraploid potato. Genome 61: 449–456. https://doi.org/10.1139/gen-2017-0236.
van Berloo, R., R.C.B. Hutten, H.J. van Eck, and R.G.F. Visser. 2007. An online potato pedigree database resource. Potato Research 50: 45–57. https://doi.org/10.1007/s11540-007-9028-3.
Breese, M.R., and Y. Liu. 2013. NGSUtils: A software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics 29: 494–496. https://doi.org/10.1093/bioinformatics/bts731.
Butler, N.M., Baltes, N.J., Voytas, D.F., and D.S. Douches. 2016. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Frontiers in Plant Science, 7, 1045. https://doi.org/10.3389/fpls.2016.01045.
Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836–846. https://doi.org/10.1038/nrg1711.
Comai, L., Amundson, K. R., Ordoñez, B., Zhao, X., Braz, G. T., Jiang, J., Henry, I. M. 2021. LD-CNV: rapid and simple discovery of chromosomal translocations using linkage disequilibrium between copy number variable loci. Genetics 219. https://doi.org/10.1093/genetics/iyab137.
Craze, M., Bates, R., Bowden, S., and E.J. Wallington. 2018. Highly Efficient Agrobacterium-Mediated Transformation of Potato (Solanum tuberosum) and Production of Transgenic Microtubers. Current protocols in Plant Biology, 3, 33–41. https://doi.org/10.1002/cppb.20065.
Ellis, D., O. Chavez, J. Coombs, J. Soto, R. Gomez, D. Douches, A. Panta, R. Silvestre, and N.L. Anglin. 2018. Genetic identity in genebanks: Application of the SolCAP 12K SNP array in fingerprinting and diversity analysis in the global in trust potato collection. Genome 61: 523–537. https://doi.org/10.1139/gen-2017-0201.
Endelman, J.B., C.A. Schmitz Carley, D.S. Douches, J.J. Coombs, B. Bizimungu, W.S. De Jong, K.G. Haynes, D.G. Holm, J.C. Miller Jr., R.G. Novy, J.P. Palta, D.L. Parish, G.A. Porter, V.R. Sathuvalli, A.L. Thompson, and G.C. Yencho. 2017. Pedigree reconstruction with genome-wide markers in potato. American Journal of Potato Research 94: 184–190. https://doi.org/10.1007/s12230-016-9556-y.
Felcher, K.J., J.J. Coombs, A.N. Massa, C.N. Hansey, J.P. Hamilton, R.E. Veilleux, C.R. Buell, and D.S. Douches. 2012. Integration of two diploid potato linkage maps with the potato genome sequence. PLoS ONE 7: e36347. https://doi.org/10.1371/journal.pone.0036347.
Fossi, M., K.R. Amundson, S. Kuppu, A.B. Britt, and L. Comai. 2019. Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiology 180: 78–86. https://doi.org/10.1104/pp.18.00906.
Foster, T.M., and M.J. Aranzana. 2018. Attention sports fans! The far-reaching contributions of bud sport mutants to horticulture and plant biology. Horticulture Research 5: 44. https://doi.org/10.1038/s41438-018-0062-x.
Garreta, L., I. Cerón-Souza, M.R. Palacio, and P.H. Reyes-Herrera. 2021. MultiGWAS: An integrative tool for genome wide association studies in tetraploid organisms. Ecology and Evolution 11: 7411–7426. https://doi.org/10.1002/ece3.7572.
Genesys. 2022. Accession browser. https://www.genesys-pgr.org/a/v2zwrK7R3LB. Accessed 27 June 2022.
Ghislain, M., A.A. Byarugaba, E. Magembe, A. Njoroge, C. Rivera, M.L. Román, J.C. Tovar, S. Gamboa, G.A. Forbes, J.F. Kreuze, A. Barekye, and A. Kiggundu. 2019. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnology Journal 17: 1119–1129. https://doi.org/10.1111/pbi.13042.
Ghislain M., Zhang D.P., and M.R. Herrera. 1999. Molecular Biology Laboratory Protocols Plant Genotyping: Training Manual. In Ghislain M., Zhang D. P., Herrera, M. R. (Ed.), International Potato Center, Lima, Peru. http://cipotato.org/wp-content/uploads/2014/11/Molecular-Training-Manual.pdf.
González, M.N., Massa, G.A., Andersson, M., Turesson, H., Olsson, N., Fält, A.-S., Storani, L., Oneto, C.A.D., Hofvander, P., and S.E. Feingold. 2020. Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01649.
Haesaert, G., J.H. Vossen, R. Custers, M. De Loose, A. Haverkort, B. Heremans, R. Hutten, G. Kessel, S. Landschoot, B. Van Droogenbroeck, R.G.F. Visser, and G. Gheysen. 2015. Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Protection 77: 163–175. https://doi.org/10.1016/j.cropro.2015.07.018.
Hardigan, M.A., Bamberg, J., Buell, C.R., and D.S. Douches. 2015. Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. petota. The Plant Genome 8:eplantgenome2014.06.0025. https://doi.org/10.3835/plantgenome2014.06.0025.
Hardigan, M.A., E. Crisovan, J.P. Hamilton, J. Kim, P. Laimbeer, C.P. Leisner, N.C. Manrique-Carpintero, L. Newton, G.M. Pham, B. Vaillancourt, X. Yang, Z. Zeng, D.S. Douches, J. Jiang, R.E. Veilleux, and C.R. Buell. 2016. Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum. The Plant Cell 28: 388–405. https://doi.org/10.1105/tpc.15.00538.
Hardigan, M.A., F.P.E. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, and C.R. Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences of the United States of America 114: E9999–E10008. https://doi.org/10.1073/pnas.1714380114.
Hirsch, C. N., Hirsch, C. D., Felcher, K., Coombs, J., Zarka, D., Van Deynze, A., De Jong, W., Veilleux, R. E., Jansky, S., Bethke, P., Douches, D. S., Buell, C. R. 2013. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3 3:1003–1013. https://doi.org/10.1534/g3.113.005595.
Hoopes, G., Meng, X., Hamilton, J. P., Achakkagari, S. R., de Alves Freitas Guesdes, F., Bolger, M. E., Coombs, J. J., Esselink, D., Kaiser, N. R., Kodde, L., Kyriakidou, M., Lavrijssen, B., van Lieshout, N., Shereda, R., Tuttle, H. K., Vaillancourt, B., Wood, J. C., de Boer, J.M., Bornowski, N., Bourke, P., Douches, D., van Eck, H. J., Ellis, D., Feldman, M. J., Gardner, K. M., Hopman, J. C. P., Jiang, J., De Jong, W. S., Kuhl, J. C., Novy, R. G., Oome, S., Sathuvalli, V., Tan, E.H., Ursum, R. A., Vales, M. I., Vining, K., Visser, R. G. F., Vossen, J., Yencho, G. C., Anglin, N. L., Bachem, C. W. B., Endelman, J. B., Shannon, L. M., Strömvik, M. V., Tai, H. H., Usadel, B., Buell, C. R., Finkers, R. 2022. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant 15:520–536. https://doi.org/10.1016/j.molp.2022.01.003.
Jahan, S.N., A.K.M. Åsman, P. Corcoran, J. Fogelqvist, R.R. Vetukuri, and C. Dixelius. 2015. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. Journal of Experimental Botany 66: 2785–2794. https://doi.org/10.1093/jxb/erv094.
Kolech, S.A., D. Halseth, K. Perry, D. Wolfe, D.S. Douches, J. Coombs, and W. De Jong. 2016. Genetic diversity and relationship of ethiopian potato varieties to germplasm from North America, Europe and the International Potato Center. American Journal of Potato Research 93: 609–619. https://doi.org/10.1007/s12230-016-9543-3.
Li, Y., C. Colleoni, J. Zhang, Q. Liang, Y. Hu, H. Ruess, R. Simon, Y. Liu, H. Liu, G. Yu, E. Schmitt, C. Ponitzki, G. Liu, H. Huang, F. Zhan, L. Chen, Y. Huang, D. Spooner, and B. Huang. 2018. Genomic analyses yield markers for identifying agronomically important genes in potato. Molecular Plant 11: 473–484. https://doi.org/10.1016/j.molp.2018.01.009.
Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17:10–12. https://doi.org/10.14806/ej.17.1.200.
Nicolia, A., Proux-Wéra, E., Åhman, I., Onkokesung, N., Andersson, M., Andreasson, E., and L.-H Zhu. 2015. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. Journal of biotechnology, 204, 17–24. https://doi.org/10.1016/j.jbiotec.2015.03.021.
McCue, K.F., L.V.T. Shepherd, P.V. Allen, M.M. Maccree, D.R. Rockhold, D.L. Corsini, H.V. Davies, and W.R. Belknap. 2005. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: Using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Science 168: 267–273. https://doi.org/10.1016/j.plantsci.2004.08.006.
Ooms, G., M.M. Burrell, A. Karp, M. Bevan, and J. Hille. 1987. Genetic transformation in two potato cultivars with T-DNA from disarmed Agrobacterium. Theoretical and Applied Genetics 73: 744–750. https://doi.org/10.1007/BF00260785.
Pandey, J., D.C. Scheuring, J.W. Koym, J. Coombs, R.G. Novy, A.L. Thompson, D.G. Holm, D.S. Douches, J.C. Miller Jr., and M.I. Vales. 2021. Genetic diversity and population structure of advanced clones selected over forty years by a potato breeding program in the USA. Scientific Reports 11: 8344. https://doi.org/10.1038/s41598-021-87284-x.
Pham, G. M., Hamilton, J. P., Wood, J. C., Burke, J. T., Zhao, H., Vaillancourt, B., Ou, S., Jiang, J., Buell, C. R. 2020. Construction of a chromosome-scale long-read reference genome assembly for potato.GigaScience 9. https://doi.org/10.1093/gigascience/giaa100.
Pham, G.M., L. Newton, K. Wiegert-Rininger, B. Vaillancourt, D.S. Douches, and C.R. Buell. 2017. Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato. The Plant Journal 92: 624–637. https://doi.org/10.1111/tpj.13706.
Pieczynski, M., W. Marczewski, J. Hennig, J. Dolata, D. Bielewicz, P. Piontek, A. Wyrzykowska, D. Krusiewicz, D. Strzelczyk-Zyta, D. Konopka-Postupolska, M. Krzeslowska, A. Jarmolowski, and Z. Szweykowska-Kulinska. 2013. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal 11: 459–469. https://doi.org/10.1111/pbi.12032.
Prodhomme, C., P.G. Vos, M.J. Paulo, J.E. Tammes, R.G.F. Visser, J.H. Vossen, and H.J. van Eck. 2020. Distribution of P1(D1) wart disease resistance in potato germplasm and GWAS identification of haplotype-specific SNP markers. Theoretical and Applied Genetics 133: 1859–1871. https://doi.org/10.1007/s00122-020-03559-3.
Quinlan, A.R., and I.M. Hall. 2010. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842. https://doi.org/10.1093/bioinformatics/btq033.
Rosyara, U. R., De Jong, W. S., Douches, D. S., Endelman, J. B. 2016. Software for genome wide association studies in autopolyploids and Its application to potato. The Plant Genome 9. https://doi.org/10.3835/plantgenome2015.08.0073.
Schmitz Carley, C.A., J.J. Coombs, D.S. Douches, P.C. Bethke, J.P. Palta, R.G. Novy, and J.B. Endelman. 2017. Automated tetraploid genotype calling by hierarchical clustering. Theoretical and Applied Genetics 130: 717–726. https://doi.org/10.1007/s00122-016-2845-5.
Seibt, K.M., T. Wenke, K. Muders, B. Truberg, and T. Schmidt. 2016. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization. The Plant Journal: For Cell and Molecular Biology 86: 268–285. https://doi.org/10.1111/tpj.13170.
Sevestre, F., Facon, M., Wattebled, F., Szydlowski, N. 2020. Facilitating gene editing in potato: a Single-Nucleotide Polymorphism (SNP) map of the Solanum tuberosum L. cv. Desiree genome. Scientific Reports 10. https://doi.org/10.1038/s41598-020-58985-6.
Sharma, S.K., MacKenzie, K., McLean, K., Dale, F., Daniels, S., Bryan, G. J. 2018. Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato. G3 8:3185–3202. https://doi.org/10.1534/g3.118.200377.
Stiekema, W.J., F. Heidekamp, J.D. Louwerse, H.A. Verhoeven, and P. Dijkhuis. 1988. Introduction of foreign genes into potato cultivars Bintje and Désirée using an Agrobacterium tumefaciens binary vector. Plant Cell Reports 7: 47–50. https://doi.org/10.1007/BF00272976.
Sun, H., W.-B. Jiao, K. Krause, J.A. Campoy, M. Goel, K. Folz-Donahue, C. Kukat, B. Huettel, and K. Schneeberger. 2022. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nature Genetics 54: 342–348. https://doi.org/10.1038/s41588-022-01015-0.
Tang, D., Y. Jia, J. Zhang, H. Li, L. Cheng, P. Wang, Z. Bao, Z. Liu, S. Feng, X. Zhu, D. Li, G. Zhu, H. Wang, Y. Zhou, Y. Zhou, G.J. Bryan, C.R. Buell, C. Zhang, and S. Huang. 2022. Genome evolution and diversity of wild and cultivated potatoes. Nature 606: 535–541. https://doi.org/10.1038/s41586-022-04822-x.
Uitdewilligen, J. G. A. M. L., Wolters, A.-M. A., D’hoop, B. B., Borm, T. J. A., Visser, R. G. F., van Eck, H. J. 2013. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PloS one 8:e62355. https://doi.org/10.1371/journal.pone.0062355.
United States Department of Agriculture. 1960. Plant Inventory No. 162. https://handle.nal.usda.gov/10113/39242. Accessed 27 June 2022.
United States Department of Agriculture. 1969. Plant Inventory No. 174. https://handle.nal.usda.gov/10113/39201. Accessed 27 June 2022.
Van Eck, J., B. Conlin, D.F. Garvin, H. Mason, D.A. Navarre, and C.R. Brown. 2007. Enhancing beta-carotene content in potato by rnai-mediated silencing of the beta-carotene hydroxylase gene. American Journal of Potato Research 84: 331. https://doi.org/10.1007/BF02986245.
Veillet, F., Chauvin, L., Kermarrec, M.-P., Sevestre, F., Merrer, M., Terret, Z., Szydlowski, N., Devaux, P., Gallois, J.-L., and J.-E. Chauvin. 2019. The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Reports, 38, 1065–1080. https://doi.org/10.1007/s00299-019-02426-w
Vos, P.G., J.G.A.M.L. Uitdewilligen, R.E. Voorrips, R.G.F. Visser, and H.J. van Eck. 2015. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): An insight into the breeding history. Theoretical and Applied Genetics 128: 2387–2401. https://doi.org/10.1007/s00122-015-2593-y.
Zhou, Q., D. Tang, W. Huang, Z. Yang, Y. Zhang, J.P. Hamilton, R.G.F. Visser, C.W.B. Bachem, C. Robin Buell, Z. Zhang, C. Zhang, and S. Huang. 2020. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics 52: 1018–1023. https://doi.org/10.1038/s41588-020-0699-x.
Acknowledgements
Financial support for this research was provided by National Science Foundation Plant Genome Integrative Organismal Systems (IOS) Grant 1956429 (Variants and Recombinants without Meiosis) to L.C.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
The authors declare that they have no conflict of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Amundson, K.R., Henry, I.M. & Comai, L. The United States Potato Genebank Holding of cv. Desiree is a Somatic Mutant of cv. Urgenta. Am. J. Potato Res. 100, 27–38 (2023). https://doi.org/10.1007/s12230-022-09892-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12230-022-09892-1
Keywords
- Trio analysis
- Clone identification
- SNP array
- Genome sequencing
- Breeding
- Clone
- Chromosome translocation
- Somatic evolution