Skip to main content
Log in

Discoloration of Raw and Cooked Potatoes: Fundamentals of Nature, Mechanisms, Causes, Measurements, and Controls

  • Review
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

A Correction to this article was published on 22 July 2022

This article has been updated

Abstract

The discoloration of raw and cooked potato tubers and potato products is an undesirable trait due to its negative influence on final product physical appearance, customer appeal, and marketability; the nutritional quality can also be reduced. Most studies concerning this matter have discussed enzymatic and non-enzymatic types of discoloration, the enzymes involved and the biochemical signaling pathways stimulated by physical impact or cold storage, and the physicochemical and environmental factors involved. However, there is a dearth of information regarding the causes and measures to control discoloration in potatoes. This review summarizes the current status of research related to the phenomenon of discoloration of raw and cooked tubers, controlled by both genotype and environment (intrinsic and extrinsic factors), and the impact of ongoing efforts to mitigate this occurrence to develop more efficient methods of controlling potato discoloration.

Resumen

El oscurecimiento de los tubérculos de papa crudos y cocidos y los productos de papa es un rasgo indeseable debido a su influencia negativa en la apariencia física del producto final, el atractivo para el cliente y la comercialización; la calidad nutricional también puede reducirse. La mayoría de los estudios sobre este asunto han discutido los tipos de oscurecimiento enzimático y no enzimático, las enzimas involucradas y las vías de señalización bioquímica estimuladas por el impacto físico o el almacenamiento en frío, y los factores fisicoquímicos y ambientales involucrados. Sin embargo, solo se dispone de poca información sobre las causas y medidas para controlar el oscurecimiento en las papas. Esta revisión resume el estado actual de la investigación relacionada con el fenómeno del oscurecimiento de los tubérculos crudos y cocidos, controlados tanto por el genotipo como por el medio ambiente (factores intrínsecos y extrínsecos), y el impacto de los esfuerzos en curso para mitigar esta incidencia para desarrollar métodos más eficientes de control del oscurecimiento de la papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Acharya, T., A.K. Ray, and A. Gallagher. 2006. Image Processing: Principles and applications. Journal of Electronic Imaging 15: 9901. https://doi.org/10.1117/1.2348895.

    Article  Google Scholar 

  • Adams, J.B. 1994. Green colour development in potato cooking water. Food Chemistry 49: 295–298. https://doi.org/10.1016/0308-8146(94)90174-0.

    Article  CAS  Google Scholar 

  • Adams, J. B. 2010. Effect of enzymatic reactions oncolor of fruits and vegetables. In Enzymes in Fruit and Vegetable Processing (pp 33–58). CRC Press.

  • Adams, J.B., and H.M. Brown. 2007. Discoloration in raw and processed fruits and vegetables. Critical Reviews in Food Science & Nutrition 47: 319–333. https://doi.org/10.1080/10408390600762647.

    Article  CAS  Google Scholar 

  • Amtmann, A., H.J. Bohnert, and R.A. Bressan. 2005. Abiotic stress and plant genome evolution. search for new models. Plant Physiology 138: 127–130. https://doi.org/10.1104/pp.105.059972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajema, R. W., Hyde, G. M., & Baritelle, A. L. 1998. Turgor and temperature effects on dynamic failure 3properties of potato tuber tissue. Transactions of the Asae, 41, 741–746. https://doi.org/10.13031/2013.17202.

  • Baldwin, E.A., M.O. Nisperos, X. Chen, and R.D. Hagenmaier. 1996. Improving storage life of cut apple and potato with edible coating. Postharvest Biology & Technology 9: 151–163. https://doi.org/10.1016/S0925-5214(96)00044-0.

    Article  CAS  Google Scholar 

  • Baritelle, A.L., and G.M. Hyde. 2003. Specific gravity and cultivar effects on potato tuber impact sensitivity. Postharvest Biology & Technology 29: 279–286. https://doi.org/10.1016/s0925-5214(03)00003-6.

    Article  Google Scholar 

  • Baritelle, A., G. Hyde, R. Thornton, and R. Bajema. 2000. A classification system for impact-related defects in potato tubers. American Journal of Potato Research 77: 143–148. https://doi.org/10.1007/BF02853938.

    Article  Google Scholar 

  • Birnbaum, E., W.M. Duggar, and B.C.A. Beasley. 1977. Interaction of boron with components of nucleic acid metabolism in cotton ovules cultured in vitro. Plant Physiology 59: 1034–1038. https://doi.org/10.1104/pp.59.6.1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blahovec, J. 2006. Shape of bruise spots in impacted potatoes. Postharvest Biology & Technology 39: 278–284. https://doi.org/10.1016/j.postharvbio.2005.11.004.

    Article  Google Scholar 

  • Bobo-García, G., C. Arroqui, G. Merino, and P. Vírseda. 2020. Antibrowning compounds for minimally processed potatoes: A review. Food Reviews International 36: 529–546. https://doi.org/10.1080/87559129.2019.1650761.

    Article  CAS  Google Scholar 

  • Bonierbale, M., G.B. Zapata, T.Z. Felde, and P. Sosa. 2010. Nutritional composition of potatoes. Cahiers De Nutrition Et De Diététique. https://doi.org/10.1016/S0007-9960(10)70005-5.

    Article  Google Scholar 

  • Boonsiripiphat, K., and C. Theerakulkait. 2009. Extraction of rice bran extract and some factors affecting its inhibition of polyphenol oxidase activity and browning in potato. Preparative Biochemistry & Biotechnology 39: 147–158. https://doi.org/10.1080/10826060902800817.

    Article  CAS  Google Scholar 

  • Braun, H., P. Fontes, C. Busato, P.R. Cecon, and M. Silva. 2010. Effect of nitrogen rates and days of light exposure on greening evaluated by visual scale and chlorophyll meter of tubers of potato cultivars. Journal of Food Agriculture and Environment 8: 933–938. https://doi.org/10.1007/s11746-011-1834-8.

    Article  CAS  Google Scholar 

  • Brun-Merimee, S., C. Billaud, L. Louarme, and J. Nicolas. 2004. Effect of glutathione and Maillard reaction products prepared from glucose or fructose with glutathione on polyphenoloxidase from apple—II. Kinetic study and mechanism of inhibition. Food Chemistry 84: 235–241. https://doi.org/10.1016/S0308-8146(03)00206-1.

    Article  CAS  Google Scholar 

  • Calder, B.L., E.A. Cowles, K. Davis-Dentici, and A.A. Bushway. 2012. The effectiveness of antibrowning dip treatments to reduce after-cooking darkening in potatoes. Journal of Food Science 77: S342–S347. https://doi.org/10.1111/j.1750-3841.2012.02900.x.

    Article  CAS  PubMed  Google Scholar 

  • Calder, B.L., D.I. Skonberg, K. Davis-Dentici, B.H. Hughes, and J.C. Bolton. 2011. The effectiveness of ozone and acidulant treatments in extending the refrigerated shelf life of fresh-cut potatoes. Journal of Food Science 76: S492–S498. https://doi.org/10.1111/j.1750-3841.2011.02371.x.

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Cristóbal, J., L. Lunar, F. Lafont, A. Baumert, and A. González-Fontes. 2004. Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves. Journal of Plant Physiology 161: 879–881. https://doi.org/10.1016/j.jplph.2003.12.003.

    Article  CAS  PubMed  Google Scholar 

  • Campos, H., Ortiz, O. 2020. The potato crop its agricultural, nutritional and social contribution to humankind, Springer Nature Switzerland AG, 1–507.

  • Chen, P., and Z. Sun. 1991. A review of non-destructive methods for quality evaluation and sorting of agricultural products. Journal of Agricultural Engineering Research 49: 85–98. https://doi.org/10.1016/0963-8695(91)90149-W.

    Article  Google Scholar 

  • Chen, X.G., C.Y. Shi, H.M. Li, A.J. Zhang, X.M. Shi, Z.H. Tang, and M. Wei. 2013. Effects of potassium fertilization period on photosynthetic characteristics and storage root starch accumulation of edible sweetpotato. Ying yong sheng tai xue bao= The journal of applied ecology 24 (3): 759–763.

    CAS  PubMed  Google Scholar 

  • Cheng, S., Y.F. Zhang, Z.Q. Zeng, J. Lin, Y.W. Zhang, H. Ni, and H.H. Li. 2015. Screening, separating, and completely recovering polyphenol oxidases and other biochemicals from sweet potato wastewater in starch production. Applied Microbiology & Biotechnology 99: 1745. https://doi.org/10.1007/s00253-014-6034-7.

    Article  CAS  Google Scholar 

  • Ciou, J.Y., H.H. Lin, P.Y. Chiang, C.C. Wang, and A.L. Charles. 2011. The role of polyphenol oxidase and peroxidase in the browning of water caltrop pericarp during heat treatment. Food Chemistry 127: 523–527. https://doi.org/10.1016/j.foodchem.2011.01.034.

    Article  CAS  PubMed  Google Scholar 

  • Clough, G.H. 1994. Potato tuber yield, mineral concentration, and quality after calcium fertilization. Journal of Amercian Society for Horticultural Science 119: 175–179.

    Article  CAS  Google Scholar 

  • Coles, G.D., J.P. Lammerink, and A.R. Wallace. 1993. Estimating potato crisp colour variability using image analysis and a quick visual method. Potato Research 36: 127–134. https://doi.org/10.1007/BF02358727.

    Article  Google Scholar 

  • Conrath, U. 2009. Chapter 9 priming of induced plant defense responses. Advances in Botanical Research, 51, 361–395. https://doi.org/10.1016/S0065-2296(09)51009-9.

  • Corsini, D. 2001. Components of blackspot bruising. University of Idaho Potato Conference.

  • Corsini, D.L., J.J. Pavek, and B. Dean. 1992. Differences in free and protein-bound tyrosine among potato genotypes and the relationship to internal blackspot resistance. American Potato Journal 69: 423–435. https://doi.org/10.1007/BF02852293.

    Article  CAS  Google Scholar 

  • Cren, M., and B. Hirel. 1999. Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell. Plant and Cell Physiology 40 (12): 1187–1193.

    Article  CAS  Google Scholar 

  • Culley, D.E., B.B. Dean, and C.R. Brown. 2002. Introgression of the low browning trait from the wild Mexican species Solanum hjertingii into cultivated potato (S. tuberosum L.). Euphytica 125 (3): 293–303.

    Article  CAS  Google Scholar 

  • Delgado-Andrade, Cristina. 2014. Maillard reaction products: some considerations on their health effects. Clinical Chemistry & Laboratory Medicine Cclm 52: 53–60. https://doi.org/10.1515/cclm-2012-0823.

    Article  CAS  Google Scholar 

  • Delgado-Andrade, C., I. Seiquer, M. García, G. Galdó, and M.P. Navarro. 2011. Increased Maillard reaction products intake reduces phosphorus digestibility in male adolescents. Nutrition 27: 86–91. https://doi.org/10.1016/j.nut.2009.10.009.

    Article  CAS  PubMed  Google Scholar 

  • Domkářová, J., and B. Vokál. 2005. The evaluation method of potato genotype resistance to blackspot bruise. Plant Soil and Environment 51 (2): 74–81.

    Article  Google Scholar 

  • Dutt, S., Raigond, P., Singh, B., Manjul, A. S., & Chakrabarti, S. K. 2020. Potato Proteins. In Potato (pp. 51–71). Springer, Singapore.

  • Fricke, W., and E. Pahlich. 2010. The effect of water stress on the vacuole-extravacuole compartmentation of proline in potato cell suspension cultures. Physiologia Plantarum 78 (3): 374–378. https://doi.org/10.1111/j.1399-3054.1990.tb09051.x.

    Article  Google Scholar 

  • Galdón, B.R., D.R. Mesa, E.R. Rodríguez, and C.D. Romero. 2010. Amino acid content in traditional potato cultivars from the Canary Islands. Journal of Food Composition and Analysis 23 (2): 148–153. https://doi.org/10.1016/j.jfca.2009.08.009.

    Article  CAS  Google Scholar 

  • Gonçalves, D. N., Pereira, A. M., Soares, L. G., da Silva Guimarães, M. E., Petrucci, K. P. D. O. S., de Oliveira, L. S., ... & Finger, F. L. 2020. Post-Harvest Quality of cv. Markies Potatoes Submited to Mechancial Damages. Journal of Agricultural Science12(2), 124. https://doi.org/10.5539/jas.v12n2p124.

  • Gonzales, A.P., G.B. Naranjo, G.E. Leiva, and L.S. Malec. 2010. Maillard reaction kinetics in milk powder: Effect of water activity at mild temperatures. International Dairy Journal 20 (1): 40–45. https://doi.org/10.1016/j.idairyj.2009.07.007.

    Article  CAS  Google Scholar 

  • Hajslova, J., V. Schulzova, P. Slanina, K. Janne, K.E. Hellenaes, and C. Andersson. 2005. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Additives Contaminants 22 (6): 514–534. https://doi.org/10.1080/02652030500137827.

    Article  CAS  PubMed  Google Scholar 

  • Heinzle, E., F. Matsuda, H. Miyagawa, K. Wakasa, and T. Nishioka. 2010. Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation. Plant Journal 50 (1): 176–187. https://doi.org/10.1111/j.1365-313X.2007.03037.x.

    Article  CAS  Google Scholar 

  • Heisler, E.G., J. Siciliano, R.H. Treadway, and C.F. Woodward. 2010. After-cooking discoloration of potatoes. Iron content in relation to blackening tendency of tissuea. Journal of Food Science 28 (4): 453–459. https://doi.org/10.1111/j.1365-2621,1963.tb00226.x.

    Article  Google Scholar 

  • Hu, Y., L. Deng, J. Chen, S. Zhou, and M. Chen. 2016. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars. Food Chemistry 194: 46–54. https://doi.org/10.1016/j.foodchem.2015.07.133.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, M., N.T. Eannetta, H. Yu, S.M. Newman, and J.C. Steffens. 1993. cDNA cloning and expression of potato polyphenol oxidase. Plant Molecular Biology 21: 59–68. https://doi.org/10.1007/BF00039618.

    Article  CAS  PubMed  Google Scholar 

  • Jenner, H.L., B.M. Winning, A.H. Millar, K.L. Tomlinson, C.J. Leaver, and S.A. Hill. 2001. NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiology 126 (3): 1139–1149. https://doi.org/10.1104/pp.126.3.1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., J. Fu, G. Zauberman, and Y. Fuchs. 1999. Purification of polyphenol oxidase and the browning control of litchi fruit by glutathione and citric acid. Journal of the Science of Food and Agriculture 79 (7): 950–954. https://doi.org/10.1002/(SICI)1097-0010.

    Article  CAS  Google Scholar 

  • Jung, J.K., S.U. Lee, N. Kozukue, C.E. Levin, and M. Friedman. 2011. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. Journal of Food Composition & Analysis 24 (1): 29–37. https://doi.org/10.1016/j.jfca.2010.03.025.

    Article  CAS  Google Scholar 

  • Kaewka, K., K. Portongkum, and C. Theerakulkait. 2009. Preparation of ultrafiltered rice bran extract and some factors affecting its browning inhibition in potato puree. Preparative Biochemistry and Biotechnology. 39 (4): 360–371. https://doi.org/10.1080/10826060903209505.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, B. H., Palta, J. P., & Crump, P. M. (2006). Enhancing tuber calcium concentration may reduce incidence of blackspot bruise injury in potatoes. HortScience: a publication of the American Society for Horticultural Science, 41(5):1213–1221. https://doi.org/10.1007/s10658-006-9032-5.

  • Kasprzycka-Guttman, R.T. 1992. Analysis of organic acids in potato wastewater. Food Chemistry. 45 (4): 283–287. https://doi.org/10.1016/0308-8146(92)90161-T.

    Article  Google Scholar 

  • Kirk, W.W., A. Rocha, S.I. Hollosy, R. Hammerschmidt, and P.S. Wharton. 2006. Effect of soil salinity on internal browning of potato tuber tissue in two soil types. American Journal of Potato Research 83 (3): 223–232. https://doi.org/10.3200/SOCP.145.5.519-530.

    Article  CAS  Google Scholar 

  • Knowles, N.R., E.P. Driskill, and L.O. Knowles. 2009. Sweetening responses of potato tubers of different maturity to conventional and non-conventional storage temperature regimes. Postharvest Biology and Technology 52 (1): 49–61. https://doi.org/10.1016/j.postharvbio.2008.08.015.

    Article  CAS  Google Scholar 

  • Kouakou, T.H., Y.J. Kouadio, P. Kouamé, P. Waffo-Téguo, A. Décendit, and J.M. Mérillon. 2009. Purification and biochemical characterization of polyphenol oxidases from embryogenic and nonembryogenic cotton (Gossypium hirsutum L.) cells. Applied biochemistry and biotechnology 158 (2): 285–301.

    Article  CAS  Google Scholar 

  • Külen, O., C. Stushnoff, and D.G. Holm. 2013. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. Journal of the Science of Food and Agriculture 93 (10): 2437–2444. https://doi.org/10.1002/jsfa.6053.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, G., L.O. Knowles, and N.R. Knowles. 2015. Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities. Planta 242 (5): 1153–1166. https://doi.org/10.1007/s00425-015-2346-9.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., I. Shaunak, A.K. Thakur, and D.K. Srivastava. 2017. Health promising medicinal molecules in vegetable crops. Journal of Genetics and Genomics 1 (1): 1–4.

    CAS  Google Scholar 

  • Kumari, M., M. Kumar, and S.S. Solankey. 2018. Breeding potato for quality improvement Potato-From Incas to all over the world, 37–59. London: Intech Open.

    Google Scholar 

  • Laerke, P.E., J. Christiansen, M.N. Andersen, and B. Veierskov. 2002. Blackspot bruise susceptibility of potato tubers during growth and storage determined by two different test methods. Potato Research 45 (2): 187–202. https://doi.org/10.1007/BF02736114.

    Article  Google Scholar 

  • Lante, A., and F. Zocca. 2010. Effect of β-cyclodextrin addition on quality of precooked vacuum packed potatoes. LWT- Food Science and Technology 43 (3): 409–414.

    Article  CAS  Google Scholar 

  • Lewis, C.E., J.R. Walker, and J.E. Lancaster. 1999. Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L) tubers. Journal of the Science of Food and Agriculture 79 (2): 311–316.

    Article  CAS  Google Scholar 

  • Lisińska, G., and K. Aniolowski. 1990. Organic acids in potato tubers: Part 1—The effect of storage temperatures and time on citric and malic acid contents of potato tubers. Food Chemistry 38 (4): 255–261. https://doi.org/10.1016/0308-8146(90)90182-4.

    Article  Google Scholar 

  • Lisińska, G., and K. Aniolowski. 1991. Organic acids in potato tubers: Part 2—The effect of gamma irradiation on citric and malic acid contents of potato tubers. Food Chemistry 40 (2): 207–212. https://doi.org/10.1016/0308-8146(91)90104-V.

    Article  Google Scholar 

  • Ma, Y., Q. Wang, G. Hong, and M. Cantwell. 2010. Reassessment of treatments to retard browning of fresh-cut Russet potato with emphasis on controlled atmospheres and low concentrations of bisulphite. International Journal of Food Science and Technology 45 (7): 1486–1494. https://doi.org/10.1111/j.1365-2621.2010.02294.x.

    Article  CAS  Google Scholar 

  • Maeda, H., and N. Dudareva. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology 63: 73. https://doi.org/10.1146/annurev-arplant-042811-105439.

    Article  CAS  PubMed  Google Scholar 

  • Maga, J.A. 1995. Influence of dips, modified atmospheric packaging, and storage time on the enzymatic discoloration of processed raw potatoes - ScienceDirect. Developments in Food Science 37: 491–495. https://doi.org/10.1016/S0167-4501(06)80175-5.

    Article  Google Scholar 

  • Maier, N.A., A.P. Dahlenburg, and C. Williams. 1994. Effects of nitrogen, phosphorus, and potassium on yield, specific gravity, crisp colour, and tuber chemical composition of potato (Solanum tuberosum L.) cv. Kennebec. Australian Journal of Experimental Agriculture 34 (6): 813–824. https://doi.org/10.1071/ea99408133.

    Article  Google Scholar 

  • Mandal, S., A. Mitra, and N. Mallick. 2009. Time course study on accumulation of cell wall-bound phenolics and activities of defense enzymes in tomato roots in relation to Fusarium wilt. World Journal of Microbiology and Biotechnology 25 (5): 795–802. https://doi.org/10.1007/s11274-008-9951-8.

    Article  CAS  Google Scholar 

  • Manzocco, L., M. Anese, and M.C. Nicoli. 2008. Radiofrequency inactivation of oxidative food enzymes in model systems and apple derivatives. Food Research International 41 (10): 1044–1049. https://doi.org/10.1016/j.foodres.2008.07.020.

    Article  CAS  Google Scholar 

  • Marles, M.S., A. Vandenberg, and K.E. Bett. 2008. Polyphenol oxidase activity and differential accumulation of polyphenolics in seed coats of pinto bean (Phaseolus vulgaris L.) characterize postharvest color changes. Journal of Agricultural and Food Chemistry 56 (16): 7049–7056. https://doi.org/10.1021/jf8004367.

    Article  CAS  PubMed  Google Scholar 

  • Mazza, G., and H. Qi. 1991. Control of after-cooking darkening in potatoes with edible film-forming products and calcium chloride. Journal of Agricultural and Food Chemistry 39 (12): 2163–2166. https://doi.org/10.1021/jf00012a012.

    Article  CAS  Google Scholar 

  • Mcgarry, A., C.C. Hole, R. Drew, and N. Parsons. 1996. Internal damage in potato tubers: A critical review. Postharvest Biology and Technology 8 (4): 239–258. https://doi.org/10.1016/0925-5214(96)00006-3.

    Article  Google Scholar 

  • McNabnay, M., B.B. Dean, R.W. Bajema, and G.M. Hyde. 1999. The effect of potassium deficiency on chemical, biochemical and physical factors commonly associated with blackspot development in potato tubers. American Journal of Potato Research 76 (2): 53–60. https://doi.org/10.1007/BF02855200.

    Article  CAS  Google Scholar 

  • Mengel, K., E.A. Kirkby, H. Kosegarten, and T. Appel. 2001. Principles of plant nutrition, 5th ed. India: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Misra, N., and A.K. Gupta. 2005. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science 169 (2): 331–339. https://doi.org/10.1016/j.plantsci.2005.02.013.

    Article  CAS  Google Scholar 

  • Mondy, N.I., and C.B. Munshi. 1993a. Effect of boron on enzymic discoloration and phenolic and ascorbic acid contents of potatoes. Journal of Agricultural and Food Chemistry 41 (4): 554–556. https://doi.org/10.1021/jf00028a009.

    Article  CAS  Google Scholar 

  • Mondy, N.I., and C.B. Munshi. 1993b. Effect of maturity and storage on ascorbic acid and tyrosine concentrations and enzymic discoloration of potatoes. Journal of Agricultural and Food Chemistry 41 (11): 1868–1871. https://doi.org/10.1021/jf00035a012.

    Article  CAS  Google Scholar 

  • Mondy, N.I., and C.B. Munshi. 1993c. Effect of type of potassium fertilizer on enzymic discoloration and phenolic, ascorbic acid, and lipid contents of potatoes. Journal of Agricultural and Food Chemistry 41 (6): 849–852. https://doi.org/10.1021/jf00030a001.

    Article  CAS  Google Scholar 

  • Montouto-Crana, M., S. Cabanas-Arias, M. Vazquez-Oderiz, E. Arbones-Macineira, and M.A. Romero-Rodriguez. 2011. Industrially processed vacuum-packed peeled kennebec potatoes: Process optimization, sensory evaluation, and consumer response. Journal of Food Science 76 (5): S314–S318. https://doi.org/10.1111/j.1750-3841.2011.02185.x.

    Article  CAS  Google Scholar 

  • Moretti, D., M.B. Zimmermann, R. Wegmüller, T. Walczyk, C. Zeder, and R.F. Hurrell. 2006. Iron status and food matrix strongly affect the relative bioavailability of ferric pyrophosphate in humans. The American journal of clinical nutrition 83 (3): 632-638.ion, 632. https://doi.org/10.1186/1476-511X-5-4.

    Article  CAS  PubMed  Google Scholar 

  • Mosley, A.R., S. Yilma, D.C. Hane, S.R. James, K.A. Rykbost, C.C. Shock, S.L. Love, D.L. Corsini, J.J. Pavek, and R.E. Thornton. 2008. Willamette: A chipping cultivar with high yield and specific gravity, low incidence of hollow heart and brown center, and suitability for fresh-market usage. American Journal of Potato Research 85 (1): 85–92. https://doi.org/10.1007/s12230-008-9006-6.

    Article  Google Scholar 

  • Mosneaguta, R., V. Alvarez, and S.A. Barringer. 2012. The effect of antibrowning agents on inhibition of potato browning, volatile organic compound profile, and microbial inhibition. Journal of Food Science 77 (11): C1234–C1240. https://doi.org/10.1111/j.1750-3841.2012.02957.x.

    Article  CAS  PubMed  Google Scholar 

  • Munshi, C. B. 1994. Effect of mineral nutrition, sprout inhibitors, and naturally-occurring toxicants on potato quality. Cornell University.

  • Munshi, C., G.F. Combs, and N.I. Mondy. 1990. Effect of selenium on the nitrogenous constituents of the potato. Journal of Agricultural and Food Chemistry 38 (11): 2000–2002. https://doi.org/10.1021/jf00101a002.

    Article  CAS  Google Scholar 

  • Musilová, J., J. Lachman, J. Bystrická, Z. Poláková, and D. Hrabovská. 2013. The changes of the polyphenol content and antioxidant activity in potato tubers (Solanum Tuberosum L.) due to nitrogen fertilization. Potravinarstvo 7 (1): 164–170. https://doi.org/10.5219/305.

    Article  Google Scholar 

  • Naczk, M., and F. Shahidi. 2004. Extraction and analysis of phenolics in food. Journal of Chromatography A 1054 (1–2): 95–111.

    Article  CAS  Google Scholar 

  • Narva Ez-Cuenca, C.E., T.F.M. Kuijpers, J.P. Vincken, P. De Waard, and H. Gruppen. 2011. New insights into an ancient antibrowning agent: Formation of sulfophenolics in sodium hydrogen sulfite-treated potato extracts. Journal of Agricultural and Food Chemistry 59 (18): 10247–10255. https://doi.org/10.1021/jf202624q.

    Article  CAS  Google Scholar 

  • Naumann, M., M. Koch, H. Thiel, A. Gransee, and E. Pawelzik. 2020. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Research 63 (1): 121–137. https://doi.org/10.1007/s11540-019-09430-3.

    Article  CAS  Google Scholar 

  • Negishi, O., K. Sugiura, and Y. Negishi. 2009. Biosynthesis of vanillin via ferulic acid in vanilla planifolia. Journal of Agricultural and Food Chemistry 57 (21): 9956–9961. https://doi.org/10.1021/jf901204m.

    Article  CAS  PubMed  Google Scholar 

  • Ngadze, E., D. Icishahayo, T.A. Coutinho, and D. Van. 2012. Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Disease 96 (2): 186–192. https://doi.org/10.1094/PDIS-02-11-0149.

    Article  CAS  PubMed  Google Scholar 

  • Ontario Ministry of Agriculture Food and Rural Affairs (OMFRA). 2006. Preventing potato bruises at harvest. Ontario Ministry of Agriculture, Food, and Rural Affairs.

  • Peters, R. 1996. Damage of potato tubers, a review. Potato Research 39 (4): 479–484. https://doi.org/10.1007/BF02358463.

    Article  Google Scholar 

  • Pinhero, R. G., Coffin, R., & Yada, R. Y. 2009. Post-harvest storage of potatoes. In Advances in potato chemistry and technology (pp. 339–370). Academic press.

  • Praeger, U., W. Herppich, C. Knig, B. Herold, and M. Geyer. 2009. Changes of water status, elastic properties and blackspot incidence during storage of potato tubers. Journal of Applied Botany and Food Quality 83 (1): 1–8. https://doi.org/10.1007/s11627-008-9188-0.

    Article  Google Scholar 

  • Qi, W., Ma, J., Zhang, J., Gui, M., Zhang, L. 2020. Effects of low doses of UV-B radiation supplementation on tuber quality in purple potato ( Solanum tuberosum L.). Plant signaling & behavior, 15(9). https://doi.org/10.1080/15592324.2020.1783490.

  • Quan, W., Z. Wu, Y. Jiao, G. Liu, Z. Wang, Z. He, …, J. Chen. 2021. Exploring the relationship between potato components and Maillard reaction derivative harmful products using multivariate statistical analysis. Food Chemistry 339: 127853.

  • Raigond, P., Singh, B., Dutt, S. and Chakrabarti, S.K. 2020. Potato nutrition and food security. Springer Nature Singapore, 1–271.

  • Rasocha, V., Hausvater, E., & Doleal, P. (2006). Evaluation of characteristics affecting the market value of table potatoes after washing. Plant, Soil and Environment - UZPI (Czech Republic), 52(6), 245–249. https://doi.org/10.1626/pps.9.83.

  • Ricachenevsky, F., M.W. Vasconcelos, H. Shou, A. Johnson, and R.A. Sperotto. 2019. Improving the nutritional content and quality of crops: Promises, achievements, and future challenges. Frontiers in Plant Science 10: 738.

    Article  Google Scholar 

  • Richard-Forget, F.C., P.M. Goupy, and J.J. Nicolas. 1992. Cysteine as an inhibitor of enzymic browning. 2. Kinetic studies. Journal of Agricultural and Food Chemistry 40 (11): 2108–2113. https://doi.org/10.1021/jf00023a014.

    Article  CAS  Google Scholar 

  • Rojas-GraM, A., R. Soliva-Fortuny, and R.O. Niartn-Belloso. 2008. Effect of natural antibrowning agents on color and related enzymes in fresh-cut fuji apples as an alternative to the use of ascorbic acid. Journal of Food Science 73 (6): S267–S272. https://doi.org/10.1111/j.1750-3841.2008.00794.x.

    Article  CAS  Google Scholar 

  • Roldan, E., C. Sanchez-Moreno, B.D. Ancos, and M.P. Cano. 2008. Characterisation of onion (Allium cepa L.) by-products as food ingredients with antioxidant and antibrowning properties. Food Chemistry 108 (3): 907–916. https://doi.org/10.1016/j.foodchem.2007.11.058.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, C. A. (2000). The systemin signaling pathway: differential activation of plant defensive genes. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1477(12), 112–121.

  • Sabba, R.P., and B.B. Dean. 1994. Sources of Tyrosine in Genotypes of Solanum tuberosum L. Differing in capacity to produce melanin pigments. Journal of American Society for Horticultural Science 119 (4): 770–774.

    Article  CAS  Google Scholar 

  • Sabba, R.P., and B.B. Dean. 1996. Effect of cold storage on proteinase and chorismate mutase activities in Solanum tuberosum L. genotypes differing in blackspot susceptibility. American Potato Journal 73 (3): 113–122. https://doi.org/10.1007/BF02855961.

    Article  CAS  Google Scholar 

  • Sanchez, P.D.C., N. Hashim, R. Shamsudin, and M.Z.M. Nor. 2020. Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: A review. Trends in Food Science & Technology 96: 208–221. https://doi.org/10.1016/j.tifs.2019.12.027.

    Article  CAS  Google Scholar 

  • Severini, C., A. Baiano, T.D. Pilli, R. Romaniello, and A.J. De Rossi. 2010. Microwave blanching of sliced potatoes dipped in saline solutions to prevent enzymatic browning. Journal of Food Biochemistry 28 (1): 75–89. https://doi.org/10.1111/j.1745-4514.2004.tb00056.x.

    Article  Google Scholar 

  • Sharma, V., Thakur, N., Raigond, P. and Singh, B. (2020). Phenolics. In Potato Springer, Singapore, 133–149.

  • Shepherd, L.V.T., C.J. Alexander, C.A. Hackett, D. McRae, J.A. Sungurtas, S.R. Verrall, …, H.V. Davies. 2015. Impacts on the metabolome of down-regulating polyphenol oxidase in potato tubers. Transgenic Research 24(3): 447–461.

  • Sim, S.K., S.M. Ohmann, and C.J. Tong. 1997. Comparison of polyphenol oxidase in tubers of Solanum tuberosum and the non-browning tubers of S hjertingii. American Potato Journal 74 (1): 1–13. https://doi.org/10.1007/BF02849167.

    Article  CAS  Google Scholar 

  • Snoeck, D., M.F. de Jesus Raposo, and A.M.M.B. De Morais. 2011. Polyphenol oxidase activity and colour changes of peeled potato (cv. Monalisa) in vacuum. International Journal of Postharvest Technology & Innovation 2 (3): 233–242. https://doi.org/10.1504/IJPTI.2011.043329.

    Article  Google Scholar 

  • Stevens, L.H., and E.J. Davelaar. 1997. Biochemical potential of potato tubers to synthesize blackspot pigments in relation to their actual blackspot susceptibility. Journal of Agricultural & Food Chemistry 45 (11): 4221–4226. https://doi.org/10.1021/jf9608837.

    Article  CAS  Google Scholar 

  • Storey, M. (2007). The harvested crop: Potato biology and biotechnology. Potato Biology and Biotechnology, 441–470. Elsevier Science BV. https://doi.org/10.1016/B978-044451018–1/50063–4.

  • Strehmel, N., U. Praeger, C. Knig, I. Fehrle, A. Erban, M. Geyer, J. Kopka, and J.J. Dongen. 2010. Time course effects on primary metabolism of potato (Solanum tuberosum) tuber tissue after mechanical impact. Postharvest Biology & Technology 56 (2): 109–116. https://doi.org/10.1016/j.postharvbio.2009.12.008.

    Article  CAS  Google Scholar 

  • Suh, S.G., J.K. Cho, E.J. Suh, H.D. Chung, and D.J. Hannapel. 1999. Immunocytochemical intracellular localization of the 22-ku Kunitz-type potato proteinase inhibitor in potato tubers and leaves. Journal of Plant Physiology 155 (4–5): 533–537.

    Article  CAS  Google Scholar 

  • Sukanya, R., Li, M. G., & Snustad, D. P. J. 1994. Root- and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonium. Plant Molecular Biology, 26(6), 1935–1946. https://doi.org/10.1007/BF00019504.

  • Sukhonthara, S., and C.J.I. Theerakulkait. 2012. Inhibitory effect of rice bran extract on polyphenol oxidase of potato and banana. International Journal of Food Science & Technology 47 (3): 482–487. https://doi.org/10.1111/j.1365-2621.2011.02867.x.

    Article  CAS  Google Scholar 

  • Sun, X., X. Jin, N. Fu, and X.J. Chen. 2020. Effects of different pretreatment methods on the drying characteristics and quality of potatoes. Food Science & Nutrition 8 (11): 5767–5775. https://doi.org/10.1002/fsn3.1579.

    Article  CAS  Google Scholar 

  • Takahama, U.J. 2004. Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochemistry Reviews 3 (1): 207–219. https://doi.org/10.1023/B:PHYT.0000047805.08470.e3.

    Article  CAS  Google Scholar 

  • Tessier, F.J., and I.J. Birlouez-Aragon. 2012. Health effects of dietary maillard reaction products: The results of ICARE and other studies. Amino Acids 42 (4): 1119–1131. https://doi.org/10.1007/s00726-010-0776-z.

    Article  CAS  PubMed  Google Scholar 

  • Thygesen, P.W., I.B. Dry, and S.P. Robinson. 1995. Polyphenol oxidase in potato. A multigene family that exhibits differential expression patterns. Plant Physiology 109 (2): 525–531. https://doi.org/10.1104/pp.109.2.525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, L.T., and C.P. Constabel. 2011. The polyphenol oxidase gene family in poplar: Phylogeny, differential expression and identification of a novel, vacuolar isoform. Planta 234 (4): 799–813. https://doi.org/10.1007/s00425-011-1441-9.

    Article  CAS  PubMed  Google Scholar 

  • Tsouvaltzis, P., Deltsidis, A. I., & Brecht, J. K. 2010. Citric acid reduces browning of fresh-cut potato by means other than as an acidulant. In Ashs Conference.

  • Turakainen, M., H. Hartikainen, and M.M.J. Seppnen. 2004. Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural & Food Chemistry 52 (17): 5378–5382. https://doi.org/10.1021/jf040077x.

    Article  CAS  Google Scholar 

  • Turakainen, M., H. Hartikainen, P. Ekholm, and M.M.J. Seppnen. 2006. Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tubers supplemented with selenate. Journal of Agricultural & Food Chemistry 54 (22): 8617–8622. https://doi.org/10.1021/jf0613987.

    Article  CAS  Google Scholar 

  • US Department of Agriculture. (2013). National nutrient database for standard reference, U.S. Department of Agriculture, Agricultural Research Service Maryland, 26.

  • Van Boekel, M.A.J.S. 1998. Effect of heating on Maillard reactions in milk. Food Chemistry 62 (4): 403–414.

    Article  Google Scholar 

  • Van der Mescht, A., J.A. De Ronde, T. Van der Merwe, and F.T. Rossouw. 1998. Changes in free proline concentrations and polyamine levels in potato leaves during drought stress. South African Journal of Science (South Africa) 94: 347–350.

    Google Scholar 

  • Vitti, M., F.F. Sasaki, P. Miguel, R.A. Kluge, and C.L.J. Moretti. 2011. Activity of enzymes associated with the enzymatic browning of minimally processed potatoes. Brazilian Archives of Biology and Technology 54: 983–990. https://doi.org/10.1590/S1516-89132011000500016.

    Article  CAS  Google Scholar 

  • Wang, M., Q.S. Zheng, Q.R. Shen, and S.W. Guo. 2013. The critical role of potassium in plant stress response. International Journal of Molecular Sciences 14 (4): 7370–7390.

    Article  CAS  Google Scholar 

  • Wang-Pruski, G. 2006. Digital imaging for evaluation of potato after-cooking darkening and its comparison with other methods. International Journal of Food Science & Technology 41 (8): 885–891.

    Article  CAS  Google Scholar 

  • Wang-Pruski, G. 2009. Proteins involved in After-Cooking darkening in potatoes.

  • Wang-Pruski, G., B.J. Zebarth, Y. Leclerc, W.J. Arsenault, E.J. Botha, S. Moorehead, and R.J. Res. 2007. Effect of soil type and nutrient management on potato after-cooking darkening. American Journal of Potato Research 84 (4): 291–299. https://doi.org/10.1007/BF02986241.

    Article  CAS  Google Scholar 

  • Wurster, R.T., and O. Smith. 1965. Potato quality XX: After-Cooking darkening in potatoes as related to the distribution of radioiron. American Journal of Potato Research 42 (2): 37–44. https://doi.org/10.1007/BF02851307.

    Article  CAS  Google Scholar 

  • Hussein, Z., O.A. Fawole, and U.L. Opara. 2020. Harvest and postharvest factors affecting bruise damage of fresh fruits. Horticultural Plant Journal 6 (1): 6–18 (CNKI:SUN: YYZW.0.202 0-0 1-001).

    Article  Google Scholar 

  • Zhu, F., Y. Hua, and G. Li. 2020. Physicochemical properties of potato, sweet potato and quinoa starch blends. Food Hydrocolloids 100. https://doi.org/10.1016/j.foodhyd.2019.105278.

  • Zocca, F., G. Lomolino, and A.J. Lante. 2010. Antibrowning potential of Brassicacaea processing water. Bioresource Technology 101 (10): 3791–3795. https://doi.org/10.1016/j.biortech.2009.12.126.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raza Hussain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, R., Sanabil, Huali, X. et al. Discoloration of Raw and Cooked Potatoes: Fundamentals of Nature, Mechanisms, Causes, Measurements, and Controls. Am. J. Potato Res. 99, 287–306 (2022). https://doi.org/10.1007/s12230-022-09884-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-022-09884-1

Keywords

Navigation