Skip to main content
Log in

An AFLP Marker Core Subset for the Cultivated Potato Species Solanum phureja ( Solanum tuberosum L. subsp. andigenum)

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

AFLP markers were used to build a core subset in 144 accessions of the United States Potato Genebank (USPG) ex situ collection of the species formerly known as Solanum phureja (now reclassified as Solanum tuberosum L. subsp. andigenum). A core subset aims to sample the minimum number possible of non-redundant germplasm units capturing the maximum diversity of the entire collection. Characterization and trait evaluation of a core subset is expected to be easier and more effective when compared to the entire germplasm collection. In this study 1534 polymorphic AFLP markers were generated and demonstrated to be useful to determine genetic relationships in the materials used. All the accessions were clearly discriminated from each other with genetic similarity levels ranging from 62 to 89%, and no duplicate germplasm samples were detected. To create the core subset, the presence of the AFLP marker was considered as the genetic trait to retain and the selection of accessions was determined by their rankings on the number of most markers added to the core. The results of this selection process revealed that the 9 top-ranked accessions of phureja, when combined, achieved the benchmark of capturing 85% of the markers detected in the complete collection. Further selection to increase the percentage of marker capture added 17 accessions with unique marker contributions which resulted in a final core subset of 26 accessions capturing 96% of the marker diversity. A Principal Component analysis determined that spatial distribution of diversity in the core was a proportional sampling of the entire diversity of the collection validating the selecting approach used. A review of the public database for valuable traits for the USPG phureja germplasm revealed that the core subset also included accessions with desirable pest/disease resistances and stress tolerances (in 25 out of the 30 traits reported in the database). The USPG expects this core subset would create opportunities for facilitating evaluation and research by using a reduced set of germplasm units with nearly all the diversity of the entire set.

Resumen

Marcadores AFLP fueron usados en 144 accesiones para construir un sub-grupo (core subset) de la colección ex situ de la especie conocida anteriormente como Solanum phureja (reclasificada ahora como Solanum tuberosum L. subsp. andigenum) del Banco de Germoplasma de Papa de los Estados Unidos (USPG). Un sub-grupo tiene como objetivo muestrear el número mínimo posible de unidades de germoplasma, no redundantes, que capturen la máxima diversidad genetica encontrada en toda la colección. Se esperaría asi que la caracterización y evaluación de caracteres de interes sea más fácil y eficiente usando el sub-grupo que usando la colección completa de germoplasma. En este estudio se generaron 1534 marcadores polimórficos de AFLP que demostraron ser útiles para establecer relaciones genéticas entre los materiales utilizados. Todas las accesiones fueron claramente diferenciadas entre sí, con niveles de similaridad genética entre 62% y 89%, además no se detectaron unidades de germoplasma duplicadas. Para la creación del sub-grupo, la presencia del marcador AFLP fue considerada como el caracter genético a retener. La selección de accesiones para incluir en el sub-grupo fue determinada por el mayor número de marcadores que cada accessión contribuyó al sub-grupo. Los resultados de este proceso revelaron que las 9 accesiones de phureja con mayor contribución, cuando combinadas, capturaron 85% de los marcadores detectados en toda la colección. Una selección adicional para elevar el porcentaje de captura de diversidad identificó 17 accesiones mas, las cuales contribuyeron con marcadores únicos, para producir un sub-grupo final de 26 accesiones que combinadas capturaron 96% de la diversidad. Un análisis de Componentes Principales (PC) determinó que la distribución espacial de la diversidad en el sub-grupo fue proporcional a la diversidad encontrada en la colección entera, validando asi la metodologia de selección usada. Una revisión de la base de datos públicos de caracteres importantes encontrados para el germoplasma de phureja conservado en USPG reveló que el sub grupo también incluyó accesiones con resistencias deseables a plagas / enfermedades asi como tolerancias a estreses abioticos (en 25 de los 30 caracteres reportados en la base de datos). USPG espera que este sub grupo pueda crear oportunidades para facilitar la evaluación y la investigación mediante el uso de un grupo reducido de germoplasma que incluye casi toda la diversidad de la colección completa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified Fragment Length Polymorphism

USPG:

US Potato Genebank

References

  • Bamberg, J.B., and A.H. del Rio. 2004. Assessment of genetic heterogeneity and allele vulnerability among breeding systems in potato. American Journal of Potato Research 81: 377–383.

    Article  CAS  Google Scholar 

  • Bamberg, J.B., and A.H. del Rio. 2011. Diversity relationships among wild potato collections from seven “Sky Island” mountain ranges in the Southwest USA. American Journal of Potato Research 88: 493–499.

    Article  Google Scholar 

  • Bamberg, J.B., and A.H. del Rio. 2014. Selection and Validation of an AFLP Marker Core Collection for the Wild Potato Solanum microdontum. American Journal of Potato Research 91: 368–375.

    Article  CAS  Google Scholar 

  • Bamberg, J.B., A.H. del Rio, D. Kinder, L. Louderback, B. Pavlik, and C. Fernandez. 2016. Core Collections of potato (Solanum) species native to the USA. American Journal of Potato Research 93: 564–571.

    Article  Google Scholar 

  • Bamberg, J.B. and A.H. del Rio. 2005. Conservation of Potato Genetic Resources. In: Razdan, M.K. and Mattoo, A.K. (eds.) Genetic Improvement of Solanaceous Crops. Volume I: Potato. Science Publishers, Inc. Plymouth, p. 476.

  • Bamberg, J.B., A. del Rio, S. Jansky, and D. Ellis. 2018. Ensuring the genetic diversity of potatoes. In: Achieving sustainable cultivation of potatoes No. 26, Vol.1 (Ed. Prof. Gefu Wang-Pruski). Burleigh-Dodds Science Publishers. Chapter 3, pp 57–80.

  • Bautista, G., H. Mendoza, and D. Uribe. 2007. Control biológico de Rhizoctonia solani en plantas de papa criolla Solanum phureja usando cepas nativas de Pseudomonas fluorescens. Acta Biológica Colombiana 12 (1): 19–32.

    Google Scholar 

  • Belaj, A., and M.d.C. Dominguez-García, S.G. Atienza, N.M. Urdíroz, R. De la Rosa, Z. Satovic, A. Martin A. Kilian, I. Trujillo, V. Valpuesta, C. Del Rio. . 2012. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genetics & Genomes 8: 365–378.

    Article  Google Scholar 

  • Berdugo-Cely, J., R.I. Valbuena, E. L.S. Sánchez-Betancourt, R. Barrero. R. Yockteng. 2017. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLoS ONE 12(3): e0173039.

  • Brown, A.H.D., M.T. Clegg. 1983. Isozyme assessment of plant genetic resources. In: Rattazzi M.C., Scandalios, J.G., Whitt, G.S. (eds). Isozymes: current topics in biological and medical research, vol 11. New York, pp 285–295

  • del Rio, A.H., and J.B. Bamberg. 2004. Geographical parameters and proximity to related species predict genetic variation in the inbred potato species Solanum verrucosum Schlechtd. Crop Science 44: 1170–1177.

    Article  Google Scholar 

  • del Rio, A.H., and J. Bamberg. 2020. A Core Subset of the ex situ collection of S. demissum at the US Potato Genebank. American Journal of Potato Research 97: 505–512.

    Article  Google Scholar 

  • Diwan, N., G.R. Bauchan, and M.S. McIntosh. 1994. A Core Collection for the United States Annual Medicago Germplasm Collection. Crop Science 34: 279–285.

    Article  Google Scholar 

  • Frankel, O.H. 1984. Genetic perspectives of germplasm conservation. In Genetic manipulation: Impact on man and society, ed. W.K. Arber, K. Llimensee, W.J. Peacock, and P. Starlinger, 161–170. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Frankel, O.H., A.H.D. Brown, and J.J. Burdon. 1995. The Conservation of Plant Biodiversity. Cambridge University Press, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Ghislain, M., D. Zhang, D. Fajardo, Z. Huaman, and R.J. Hijmans. 1999. Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genetic Resources and Crop Evolution 46: 547–555.

    Article  Google Scholar 

  • Ghislain, M., B. Trognitz, and Ma. Del R. Herrera, J. Solis, G. Casallo, C. Vásquez, O. Hurtado, R. Castillo, L. Portal, L., and M. Orrillo. . 2001. Genetic loci associated with field resistance to late blight in offspring of Solanum phureja and tuberosum grown under short-day conditions. Theoretical and Applied Genetics. 103: 433–442.

    Article  CAS  Google Scholar 

  • Ghislain, M., D. Andrade, and F. Rodríguez. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theoretical and Applied Genetics 113: 1515–1527.

    Article  CAS  Google Scholar 

  • Hawkes, J.G. 1990. The potato: Evolution, biodiversity and genetic resources. Oxford, UK: Belhaven Press.

    Google Scholar 

  • Holbrook, C.C., W.F. Anderson, and R.N. Pittman. 1993. Selection of a core collection from the U.S. Germplasm Collection of Peanut. Crop Science 33: 859–861.

    Google Scholar 

  • Huamán, Z., and D.M. Spooner. 2002. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany 89: 947–965.

    Article  Google Scholar 

  • Huamán, Z., R. Ortiz, D. Zhang, and F. Rodriguez. 2000. Isozyme analysis of entire and core collections of Solanum tuberosum subsp. andigena potato cultivars. Crop Science 40: 273–276.

    Article  Google Scholar 

  • JMP®, Version 15.0.0. SAS Institute Inc., Cary, NC, 1989–2019

  • Juyó, D., F. Sarmiento, M. Álvarez, H. Brochero, C. Gebhardt, and T. Mosquera. 2015. Genetic diversity and population structure in diploid potatoes of Solanum tuberosum Group Phureja. Crop Science 55: 760–769.

    Article  Google Scholar 

  • Monteros, C., F. Yumisaca, J. Andrade, I. Reinoso. 2010. Catálogo de cultivares de papas nativas. Sierra Centro Norte del Ecuador. Etnobotánico, morfológico, agronómico y calidad. Publicación miscelánea 176. INIAP, CIP, Papa Andina. 145 p.

  • Navarre, D.A., C.R. Brown, and V.R. Sathuvalli. 2019. Potato Vitamins, Minerals and Phytonutrients from a Plant Biology Perspective. American Journal of Potato Research. 96: 111–126.

    Article  CAS  Google Scholar 

  • Ochoa, C.M. 1990. The potatoes of South America: Bolivia. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Peña, C., L.P. Restrepo-Sánchez, A. Kushalappa, L.E. Rodríguez-Molano, T. Mosquera, and C.E. Narváez-Cuenca. 2015. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. Food Science and Technology 62: 76–82.

    Google Scholar 

  • Perrier, X., Jacquemoud-Collet, J.P. 2006. DARwin software. http://darwin.cirad.fr/

  • Pillai, S.S., D.A. Navarre, and J. Bamberg. 2013. Analysis of polyphenols, anthocyanins and carotenoids in tubers from Solanum tuberosum Group phureja, stenotomum and andigena. American Journal of Potato Research 90: 440–450.

    Article  CAS  Google Scholar 

  • Reif, J., S. Hamrit, M. Heckenberger, W. Schipprack, H. Peter Maurer, M. Bohn, and A.E. Melchinger. 2005. Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theoretical and Applied Genetics 111: 906–913.

    Article  CAS  Google Scholar 

  • Reyes-Valdés, M. H., A, Santacruz-Varela, O. Martínez, J. Simpson, C. Hayano-Kanashiro, C. Cortés-Romero. 2013. Analysis and optimization of bulk DNA sampling with binary scoring for germplasm characterization. PloS one8(11), e79936.

  • Rohlf, F.J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System Version 2.1. Exeter Publishing Setauket, New York.

  • Sequeira, L., and P.R. Rowe. 1969. Selection and utilization of Solanum phureja clones with high resistance to different strains of Pseudomonas solanacearum. American Potato Journal 46: 451–462.

    Article  Google Scholar 

  • Sokal R., C. Michener. 1958. A statistical method for evaluating systematic relationships. In: Science bulletin, 38(22), The University of Kansas.

  • Song, X., C. Zhang, Y. Li, S. Feng, Q. Yang, and S. Huang. 2016. SSR analysis of genetic diversity among 192 diploid potato cultivars. Horticultural Plant Journal 2 (3): 163–171.

    Article  Google Scholar 

  • Spooner, D.M., J. Núñez, G. Trujillo, M. Del Rosario Herrera, F. Guzmán, and M. Ghislain. 2007. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proceedings of the National Academy of Science, USA 104: 19398–19403.

    Article  CAS  Google Scholar 

  • Trognitz, B.R., M. Orrillo, L. Portal, C. Román, P. Ramón, S. Perez, and G. Chacón. 2001. Evaluation and analysis of reduction of late blight disease in a diploid potato progeny. Plant Pathology 50: 281–291.

    Article  Google Scholar 

  • van Hintum, T.J.L., and D. Haalman. 1994. Pedigree analysis for composing a core collection of modern cultivars, with examples from barley (Hordeum vulgare s. lat.). Theoretical and. Applied Genetics 88: 70–74.

    Article  Google Scholar 

  • van Treuren, R., I. Tchoudinova, L.J.M. van Soest, and T.J.L. van Hintum. 2006. Marker-assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data. Genetic Resources and Crop Evolution 53: 43–52.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the US Potato Genebank and staff for their support and technical assistance. We also thank the technical help in fragment analyses given by the staff at the University of Wisconsin-Madison Biotech Center, Ms. Laura McCulley for her technical help in the generation of AFLPs, and Ms. Natalia del Rio for her constructive comments and assistance in appropriate editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso del Rio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Rio, A., Bamberg, J. An AFLP Marker Core Subset for the Cultivated Potato Species Solanum phureja ( Solanum tuberosum L. subsp. andigenum). Am. J. Potato Res. 98, 374–383 (2021). https://doi.org/10.1007/s12230-021-09849-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-021-09849-w

Keywords

Navigation