Skip to main content
Log in

Potato Cultivar Susceptibility to Pythium Leak as Influenced by Harvest and Early Storage Temperatures

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

A Correction to this article was published on 17 June 2020

This article has been updated

Abstract

Leak is caused primarily by the fungus-like organism Pythium ultimum, which can cause severe crop loss in storage. Previous research has shown temperature as a major contributing factor to the incidence of leak in stored potatoes. The hypothesis that pulp and early storage temperatures affect cultivar susceptibility of leak has not been studied. The objective of this study was to determine the leak susceptibility of multiple russet-skinned potato cultivars and understand how leak susceptibility is affected by pulp and early storage temperatures. To accomplish the objective, Russet Norkotah selections (CO-3, TXNS-112, TXNS-278, TXNS-296, and Standard) were bruised and inoculated with a dilute spray solution of oospores of P. ultimum and stored at 21.1 C for four days to determine susceptibility between selections. To understand how pulp temperature affects cultivar susceptibility, pulp temperatures of Bannock Russet, Clearwater Russet, Russet Burbank, Ranger Russet, Teton Russet, and Umatilla Russet tubers were equilibrated to 12.8, 15.5, 18.3, and 21.1 C bruised, inoculated, and maintained at the same temperatures for four days. To address the effect of pulp and early storage temperature, cultivars Bannock Russet, Russet Norkotah CO-3, Russet Burbank, and Umatilla Russet tubers at tuber pulp temperatures of 15.5 or 21.1 C, were bruised, inoculated, and then held for 4 days at early storage temperatures of 12.8, 15.5, 18.3, and 21.1 C to simulate the ability to alter pulp temperatures with storage conditions. Selections of Russet Norkotah were similar in leak incidence; however Standard Russet Norkotah was significantly more susceptible. The impact of pulp temperature at bruising and inoculation showed all cultivars were significantly less susceptible to leak (19 to 63% incidence) at 12.8 C than at 21.1 C (72 to 93% incidence). When pulp temperatures were 15.5 or 21.1 C at bruising and inoculation and then exposed to early storage temperatures of 12.8, 15.5, 18.3, and 21.1 C, leak incidence was 11, 34, 59, and 74%, respectively; indicating the overriding impact that immediately cooling potatoes, opposed to initial tuber pulp temperatures, has on leak development. Cultivar susceptibility of leak was affected by temperature. Results highlight the importance of growing cultivars that are less susceptible to leak and to harvest susceptible cultivars when pulp temperatures are below 15.5 C or cool tubers below 15.5 C when adequate refrigeration or cooling air are available to rapidly modify temperatures in storage.

Resumen

El goteo es causado primeramente por el organismo tipo hongo Pythium ultimum, que causa severas pérdidas del cultivo en el almacén. Investigación previa ha demostrado a la temperatura como el principal factor que contribuye a la incidencia del goteo en papas almacenadas. No se ha estudiado la hipótesis de que la pulpa y las temperaturas iniciales del almacén afectan la susceptibilidad de la variedad al goteo. El objetivo de este estudio fue determinar la susceptibilidad al goteo de múltiples variedades de papa de piel tipo russet y entender cómo se afecta la susceptibilidad al goteo por la pulpa y las temperaturas tempranas de almacén. Para lograr este objetivo, a selecciones de Russet Norkotah (CO-3, TXNS-112, TXNS-278, TXNS-296, y la estándar) se les golpeó y se inocularon con una aspersión diluida de oosporas de P. ultimum y se almacenaron a 21.1 °C por cuatro días para determinar la susceptibilidad entre las selecciones. Para entender cómo la temperatura de la pulpa afecta la susceptibilidad de la variedad, se equilibró a 12.8, 15.5, 18.3, y 21.1 °C en la pulpa de Bannock Russet, Clearwater Russet, Russet Burbank, Ranger Russet, Teton Russet, y Umatilla Russet, golpeadas, inoculadas, y mantenidas a las mismas temperaturas durante cuatro días. Para atender el efecto de la pulpa y de la temperatura temprana de almacén, a tubérculos de las variedades Bannock Russet, Russet Norkotah CO-3, Russet Burbank, y Umatilla Russet a temperaturas de 25.5 o 21.1 °C se les golpeó e inoculó, y se les mantuvo por cuatro días a temperaturas iniciales de 12.8, 15.5, 18.3, y 21.1 °C para estimular la habilidad de alterar las temperaturas de la pulpa en condiciones de almacén. Las selecciones de Russet Norkotah fueron similares en la incidencia de goteo, no obstante, la Russet Norkotah estándar fue significativamente más susceptible. El impacto de la temperatura de la pulpa al daño mecánico e inoculación mostró que todas las variedades fueron significativamente menos susceptibles al goteo (19 a 63% de incidencia) a 12.8 °C que a 21.1 °C (72 a 93% de incidencia). Cuando las temperaturas de la pulpa fueron 15.5 a 21.1 °C al golpearlas e inocularlas, y después se expusieron a temperaturas iniciales de almacenamiento de 12.8, 15.5, 18.3, y 21.1 °C, la incidencia del goteo fue de 11, 34, 59 y 74%, respectivamente; indicando el impacto primordial del enfriamiento inmediato de las papas, opuesto a las temperaturas iniciales de la pulpa del tubérculo, que tiene en el desarrollo del goteo. La susceptibilidad de la variedad en el goteo se afectó por la temperatura. Los resultados resaltan la importancia de sembrar variedades que sean menos susceptibles al goteo y cosechar las variedades susceptibles cuando las temperaturas de la pulpa están por abajo de 15.5 °C o enfriar los tubérculos debajo de 15.5 °C cuando se disponga de refrigeración adecuada o aire de enfriamiento para modificar rápidamente las temperaturas en almacén.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 17 June 2020

    In the original article there were errors in some of the references. The corrected references follow:

References

  • ASABE Standards. 2018. ASAE EP475.3 Design and management of storages for bulk, fall-crop, Irish potatoes. St. Joseph, MI: ASABE.

  • Barak, E., L.V. Edgington, and B.D. Ripley. 1984. Bioactivity of the fungicide metalaxyl in potato tubers against some species of Phytophthora, Fusarium, and Alternaria, related to polyphenoloxidase activity. Canadian Journal of Plant Pathology 6 (4): 304–308.

  • Barr, D.J.S., S.I. Warwick, and N.L. Desaulniers. 1996. Isozyme variation, morphology, and growth response to temperature in Pythium ultimum. Canadian Journal of Botany 74 (5): 753–761.

  • Bates, D., M. Maechler, B. Bolker, and W. Steven. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (1): 48.

    Article  Google Scholar 

  • Berrie, A.M., X.M. Xu, and D. Johnson. 2011. Lower temperatures more effective than atmosphere modification in controlling Botrytis and Nectria rots in stored apples. Journal of Phytopathology 159 (2): 73–79.

  • Blodgett, E.C., and W.W. Ray. 1945. Leak, caused by Pythium debaryanum Hesse, produces typical “shell rot” of potato in Idaho. American Potato Journal 22 (8): 250–253.

  • Bruck, R.I., W.E. Fry, and A.E. Apple. 1980. Effect of metalaxyl, an acylalanine fungicide, on developmental stages of Phytophthora infestans. Phytopathology 70 (7): 597–601.

  • Bruin, C.A., L.V. Edgington, and B.D. Ripley. 1982. Bioactivity of the fungicide metalaxyl in potato tubers after foliar sprays. Canadian Journal of Plant Pathology 4 (4): 353–356.

  • Campion, C., P. Massiot, and F. Rouxel. 1997. Aggressiveness and production of cell-wall degrading enzymes by Pythium violae, Pythium sulcatum and Pythium ultimum, responsible for cavity spot on carrots. European Journal of Plant Pathology 103 (8): 725–735.

    Article  CAS  Google Scholar 

  • Charkowski, A.O. 2015. Biology and control of Pectobacterium in potato. American Journal of Potato Research 92 (2): 223–229.

    Article  Google Scholar 

  • Clayson, S.P., and J.S. Miller. 2007. Evaluation of inoculation, wounding and storage temperatures for post-harvest pink rot development. American Journal of Potato Research 84 (1): 83.

  • De Boer, S.H., and A. Kelman. 1978. Influence of oxygen concentration and storage factors on susceptibility of potato tubers to bacterial soft rot (Erwinia carotovora). Potato Research 21 (1): 65–80.

  • Goss, R.W., and H.J. Jensen. 1944. A pythiaceous stem-end rot of potatoes. Phytopathology 34: 1001.

    Google Scholar 

  • Grove, G.G., and R.J. Boal. 1991. Influence of temperature and wetness duration on infection of immature apple and pear fruit by Phytophthora cactorum. Phytopathology 81 (11): 1465–1471.

    Google Scholar 

  • Gudmestad, N.C., R.J. Taylor, and J.S. Pasche. 2007. Management of soilborne diseases of potato. Australasian Plant Pathology 36 (2): 109–115.

    Article  Google Scholar 

  • Hauben, L., E.R.B. Moore, L. Vauterin, M. Steenackers, J. Mergaert, L. Verdonck, and J. Swings. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Systematic and Applied Microbiology 21 (3): 384–397.

  • Hawkins, L.A. 1916. The disease of potatoes known as leak. Journal of Agricultural Research 6: 627–641.

    Google Scholar 

  • Hawkins, L.A., and R.B. Harvey. 1919. Physiological study of the parasitism of Pythium debaryanum Hesse on the potato tuber. Journal of Agricultural Research 18: 275–303.

  • Hesen, J.C. 1960. Mechanical damage to potatoes II. European Potato Journal 3 (3): 209–228.

    Article  Google Scholar 

  • Hudson, D.E., and P.H. Orr. 1977. Incidence of mechanical injury to potatoes during certain storage-related handling operations in Red River Valley production area. American Potato Journal 54 (1): 11–21.

  • James, R.V., and W.R. Stevenson, 1997. 1999. Evaluation of the effect of foliar fungicides on potato storage quality. Fungicide and Nematicide Tests 54: 180.

  • Jeffers, S.N., and S.B. Martin. 1986. Comparison of two media selective for Phytophthora and Pythium species. Plant Disease 70 (11): 1038–1043.

  • Jones, W. 1935. Soft rot of potatoes caused by Pythium ultimum Trow. Scientific Agriculture 15: 402–410.

    CAS  Google Scholar 

  • Kays S.J. and R.E. Paull. 2004. Heat, heat transfer and cooling. Chapter 9. In Postharvest biology, 459-501. Athens, GA: Exon press.

  • Kirk, W.W., B.A. Niemira, and J.M. Stein. 2001a. Influence of storage temperature on rate of potato tuber tissue infection caused by Phytophthora infestans (Mont.) de Bary estimated by digital image analysis. Potato Research 44 (1): 87–96.

  • Kirk, W.W., J.M. Stein, R.L. Schafer, and R.S. Shaw. 2001b. Evaluation of at-planting in-furrow soil applications of Ridomil 4EC, Ultra Flourish 2EC and phosphonic acid programs for potato pink rot and Pythium leak control, 2000. Fungicide and Nematicide Tests 56 (44).

  • Kleinkopf, G.E. 1995. Early season storage. American Potato Journal 72 (8): 449–462.

    Article  Google Scholar 

  • Knowles, R.N. and E.S. Plissey. 2008. Maintaining tuber health during harvest, storage, and post-storage handling. Chapter 10. In: Potato health managment, 2nd Edition, ed. D.A. Johnson , 79-99. St. Paul: American Pathological Society.

  • Lambert, D.H., M.L. Powelson, and W.R. Stevenson. 2005. Nutritional interactions influencing diseases of potato. American Journal of Potato Research 82 (4): 309–319.

    Article  CAS  Google Scholar 

  • Lennard, J.H. 1980. Factors influencing the development of potato pink rot (Phytophthora erythroseptica). Plant Pathology 29 (2): 80–86.

    Article  Google Scholar 

  • Lenth R. 2019. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.3 ed.

  • Levesque, C.A., H. Brouwer, L. Cano , J.P. Hamilton, C. Holt, E. Huitema, S. Raffaele, G.P. Robideau, M. Thines, J. Win, M.M. Zerillo, G.W. Beakes, J.L. Boore, D. Busam, B. Dumas, S. Ferriera, S.I. Fuerstenberg, C.M.M. Gachon, E. Gulin, F. Govers, L. Grenville-Briggs, N. Horner, J. Hostetler, R.H.Y. Jiang, J. Johnson, T. Krajaejun, H Lin, H.J.G. Meijer, B. Moore, P. Morris, V. Phuntmart, D. Puiu, J. Shetty, J.E. Stajich, S. Tripathy, S. Wawra, P. van West, B.R. Whitty, P.M. Coutinho, B. Henrissat, F. Martin, P.D. Thomas, B.M. Tyler, R.P. De Vries, S. Kamoun, M. Yandell, N. Tisserat, and C.R. Buell. 2010. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology. 11(7):R73.

  • Mosley, A.R., S.R. James, D.C. Hane, K.A. Rykbost, C.C. Shock, B.A. Charlton, J.J. Pavek, S.L. Love, D.L. Corsini, and R.E. Thornton. 2000. Umatilla Russet: A full season long russet for processing and fresh market use. American Journal of Potato Research 77 (2): 83–87.

  • Mulrooney, R.P. 1982. Evaluation of Ridomil for pink rot and leak control, 1981. Fungicide and Nematicide Tests 37: 78.

    Google Scholar 

  • Mulrooney, R.P. 1998. Evaluation of foliar fungicides to control Pythium leak, 1997. Fungicide and Nematicide Tests 53: 208.

  • Novy, R.G., J.L. Whitworth, J.C. Stark, B.A. Charlton, S. Yilma, N.R. Knowles, M.J. Pavek, R.R. Spear, T.L. Brandt, N. Olsen, M. Thornton, and C.R. Brown. 2014. Teton Russet: an early-maturing, dual-purpose potato cultivar having higher protein and vitamin C content, low asparagine, and resistances to common scab and Fusarium dry rot. American Journal of Potato Research 91 (4): 380–393.

  • Peters, R.D., A.V. Sturz, B.G. Matheson, W.J. Arsenault, and A. Malone. 2001. Metalaxyl sensitivity of isolates of Phytophthora erythroseptica in Prince Edward Island. Plant Pathology 50 (3): 302–309.

    Article  CAS  Google Scholar 

  • Piepho, H.P. 2004. An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics. 13 (2): 456–466.

    Article  Google Scholar 

  • Platt, H.W., R.D. Peters, T. Kloepfer-Dawes, R. Coffin, Y. Leclerc, I. Macdonald, and K. MacIsaac. 2003. Foliar and in-furrow treatments of mefenoxam for control of leak or watery rot of potatoes. Tests of Agrochemicals and Cultivars 24: 4–5.

  • Porter, L.D., P.B. Hamm, N.L. David, S.L. Gieck, J.S. Miller, B. Gundersen, and D.A. Inglis. 2009. Metalaxyl-M-resistant Pythium species in potato production areas of the Pacific Northwest of the USA. American Journal of Potato Research 86 (4): 315–326.

  • Powelson, M.L., and R.C. Rowe. 2008. Managing diseases caused by seedborne and soilborne fungi and fungus-like pathogens. Chapter 19. In: Potato health managment, 2nd Edition, ed. D.A. Johnson, 183–195. St. Paul: American Pathological Society.

  • Salas B. and G.A. Secor. 2001. Leak. In: Compendium of potato diseases, 2nd Edition, ed. W.R. Stevenson, R. Loria, G.D. Franc, D.P. W, 30-31. St Paul: American Phytopahological society.

  • Salas, B., G.A. Secor, R.J. Taylor, and N.C. Gladmestad. 2003. Assessment of resistance of tubers of potato cultivars to Phytophthora erythroseptica and Pythium ultimum. Plant Disease 87 (1): 91–97.

    Article  PubMed  Google Scholar 

  • Salas, B., R.W. Stack, G.A. Secor, and N.C. Gudmestad. 2000. The effect of wounding, temperature, and inoculum on the development of pink rot of potatoes caused by Phytophthora erythroseptica. Plant Disease 84 (12): 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  • Searle, S.R., F.M. Speed, and G.A. Milliken. 1980. Population marginal means in the linear model: an alternative to least squares means. The American Statistician 34 (4): 216–221.

  • Secor, G.A., and N.C. Gudmestad. 1999. Managing fungal diseases of potato. Canadian Journal of Plant Pathology 21 (3): 213–221.

    Article  CAS  Google Scholar 

  • Spear, R.R., Z.J. Holden, and M.J. Pavek. 2017. Fresh market evaluation of six russet-type potato varieties and four Russet Norkotah strains. American Journal of Potato Research 94 (4): 437–448.

  • Stark, J.C., and S.L. Love. 2003. Potato production systems. Moscow: University of Idaho Agricultural Communications.

    Google Scholar 

  • Strand, L. 2006. Integreated pest management for potatoes in the western United States, 2nd Edition, 82-83. Oakland: University of California Agriculture and Natural Resources Publication 3316.

  • Taylor, R.J., J.S. Pasche, and N.C. Gudmestad. 2008. Susceptibility of eight potato cultivars to tuber infection by Phytophthora erythroseptica and Pythium ultimum and its relationship to mefenoxam-mediated control of pink rot and leak. Annals of Applied Biology 152 (2): 189–199.

    Article  CAS  Google Scholar 

  • Taylor, R.J., B. Salas, and N.C. Gudmestad. 2004. Differences in etiology affect mefenoxam efficacy and the control of pink rot and leak tuber diseases of potato. Plant Disease 88 (3): 301–307.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  • Thompson, A.L., R.J. Taylor, J.S. Pasche, R.G. Novy, and N.C. Gudmestad. 2007. Resistance to Phytophthora erythroseptica and Pythium ultimum in a potato clone derived from S. berthaultii and S. etuberosum. American Journal of Potato Research 84 (2): 149.

  • Triki, M.A., S. Priou, M. El Mahjoub, and A. Baudry. 2001. Leak syndrome of potato in Tunisia caused by Pythium aphanidermatum and Pythium ultimum. Potato Research 44 (3): 221–231.

    Article  Google Scholar 

  • Voss R.E. 2016. The commercial storage of fruits, vegetables and florist and nursery stocks. In: Agricultural handbook number 66, ed. K.C. Gross, C.Y. Wang, M. Saltveit, 506–510. Maryland: United States Department of Agriculture.

  • Yellareddygari, S.K.R., R.J. Taylor, J.S. Pasche, and N.C. Gudmestad. 2019. Risk assessment analysis of potato genotype susceptibility to water rot-causing oomycetes. Crop Protection 115: 59–63.

    Article  Google Scholar 

  • Zerillo, M.M., B.N. Adhikari, J.P. Hamilton, C.R. Buell, C.A. Levesque, and N. Tisserat. 2013. Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS One 8 (9).

Download references

Acknowledgements

This research was partially supported by the Idaho Potato Commission. We are thankful to the University of Idaho statisticians, Julia Piaskowski and Bill Price, for their assistance in analyzing the data. All experiments comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K Hollingshead.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollingshead, A.K., Olsen, N.L., Thornton, M. et al. Potato Cultivar Susceptibility to Pythium Leak as Influenced by Harvest and Early Storage Temperatures. Am. J. Potato Res. 97, 393–403 (2020). https://doi.org/10.1007/s12230-020-09769-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-020-09769-1

Keywords

Navigation