American Journal of Potato Research

, Volume 96, Issue 3, pp 294–302 | Cite as

Heat Tolerance in Diploid Wild Potato Species In Vitro

  • Marcio L. Guedes
  • Kathleen G. HaynesEmail author
  • Bryan T. Vinyard
  • Cesar A. B. P. Pinto


Potatoes are a cool season crop. Yet, with growth in the world population and rising temperatures, more heat tolerant cultivars are going to be needed. The objectives of this work were to identify heat tolerance in diploid wild Solanum species, as measured by the ability to form microtubers in tissue culture, and to compare four different methods of evaluating heat tolerance. In each of five experiments conducted over time, four nodal cuttings from up to 20 genotypes from each of ten diploid wild potato species were grown in MS medium supplemented with 8% sucrose and cultured at 19 °C (cool) and 25 °C (warm) in the dark. Four methods were used to evaluate heat tolerance: percent microtuberization under warm conditions, difference in percent microtuberization between cool and warm conditions, microtuber yield under warm conditions, and the difference in microtuber yield between cool and warm conditions. Species were ranked for each of these four methods (with rank = 1 being most heat tolerant) and ranks were summed across the four methods to identify the most heat tolerant. There were significant differences among species and the species x temperature interaction was significant for percent microtuberization and microtuber yield. Percent microtuberization in five of the species was similar under cool and warm temperatures; greater under cool temperatures for three species; and, greater under warm temperatures for two species. Microtuber yield in four of the species was similar under cool and warm temperatures; greater under cool temperatures for six species; and, greater under warm temperatures for one species. Rankings of heat tolerance among the species varied by the method used, but S. kurtzianum and S. sogarandinum were the most heat tolerant.


In vitro screening Solanum species Microtuberization 


La papa es un cultivo de temporada fría. Aun así, con el crecimiento de la población mundial y el aumento de las temperaturas, se van a requerir mas variedades tolerantes al calor. Los objetivos de este trabajo fueron la identificación de tolerancia al calor en especies diploides silvestres de Solanum, medidas por la habilidad para formar microtubérculos en cultivo de tejidos, y comparar cuatro diferentes métodos para evaluar la tolerancia al calor. En cada uno de cinco experimentos llevados a cabo en el tiempo, se cultivaron cuatro cortes nodales de hasta 20 genotipos de cada una de diez especies silvestres diploides de papa, en un medio MS suplementado con 8% de sacarosa y mantenidos a 19 °C (frío) y 25 °C (caliente) en la oscuridad. Se usaron cuatro métodos para evaluar la tolerancia al calor: porcentaje de microtuberización bajo condiciones de calor, diferencia en el porcentaje de microtuberización entre condiciones fría y caliete, rendimiento de microtubérculos bajo condiciones calientes, y la diferencia en el rendimiento de microtubérculo entre condiciones fría y caliente. Se clasificaron las especies para cada uno de estos cuatro métodos (con calificación =1 para la mas tolerante al calor), y las categorías se sumaron a lo largo de los cuatro métodos para identificar la mas tolerante al calor. Hubo diferencias significativas entre las especies, y entre la interacción especie x temperatura fue significativa para porcentaje de microtuberización y rendimiento de microtubérculo. El porcentaje de microtuberización en cinco de las especies fue similar bajo temperaturas fría y caliente; fue mayor bajo temperaturas frías para tres especies, y mayor para temperaturas calientes para dos especies. El rendimiento del microtubérculo en cuatro de las especies fue similar bajo temperaturas fría y caliente; mayor bajo temperaturas frías para seis especies, y mayor bajo temperaturas calientes para una especie. La clasificación de la tolerancia al calor entre las especies varió según el método usado, pero S. kurtzianum y S. sogarandinum fueron las más tolerantes al calor.



The authors acknowledged to the Research Foundation of the state of Minas Gerais - FAPEMIG for financial support of the scholarship. The technical assistance of Karen Frazier is gratefully acknowledged.


  1. Birch, P.R., G. Bryan, B. Fenton, E.M. Gilroy, I. Hein, J.T. Jones, and I.K. Toth. 2012. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Security 4: 477–508.CrossRefGoogle Scholar
  2. Dobranszki, J., and M. Mandi. 1993. Induction of in vitro tuberization by short day period and dark treatment of potato shoots grown on hormone-free medium. Acta Biologica Hungarica 44: 411–420.Google Scholar
  3. Donnelly, d.J., W.K. Coleman, and S.E. Coleman. 2003. Potato microtuber production and performance: a review. American Journal of Potato Research 80: 103–115.CrossRefGoogle Scholar
  4. Gopal, J., A. Chamail, and D. Sarkar. 2004. In vitro production of microtubers for conservation of potato germplasm: Effect of genotype, abscisic acid, and sucrose. In Vitro Cellular and Developmental Biology-Plant 40: 485–490.CrossRefGoogle Scholar
  5. Hawkes, J.G. 1992. Biosystematics of the potato. In The potato crop, ed. P. Harris, 15–69. London: Chapman & hall.Google Scholar
  6. Haynes, K.G. and X. Qu. 2018. Three cycles of recurrent maternal half-sib selection continue to reduce foliar late blight in a diploid hybrid Solanum phureja-S. stenotomum population. American Journal of Potato Research Submitted 4/xx/2018.Google Scholar
  7. Hijmans, R.L. 2003. The effect of climate change on global potato production. American Journal of Potato Research 80: 271–280.CrossRefGoogle Scholar
  8. Hosmer, D.W., Jr., S. Lemeshow, and R.X. Sturdivant. 2013. Applied logistic regression. Third ed. New York: Wiley.Google Scholar
  9. Khan, M.A., S. Munive, and M. Bonierbale. 2015. Early generation in vitro assay to indentify potato population and clones tolerant to heat. Plant Cell, Tissue and Organ Culture 121: 45–52. Scholar
  10. Levy, D., and R.E. Veilleux. 2007. Adaptation of potato to high temperatures and salinity - a review. American Journal of Potato Research 84: 487–506.CrossRefGoogle Scholar
  11. Mall, R.K., A. Gupta, and G. Sonkar. 2016. Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering: Crop modification, nutrition, and food production, ed. S.K. Dubey, A. Pandey, and R.S. Sangwan, 23–46. Amsterdam: Elsevier.Google Scholar
  12. Mohapatra, P.P., and V.K. Batra. 2017. Tissue culture of potato (solanum tuberosum l.): A review. International Journal of Current Microbiology and Applied Sciences 6: 489–495. Scholar
  13. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.CrossRefGoogle Scholar
  14. Oerke, E.C., H.W. Dehne, F. Schönbeck, and A. Weber. 2012. Crop production and crop protection: Estimated losses in major food and cash crops. Amsterdam: Elsevier.Google Scholar
  15. Reynolds, M.P., and E.E. Ewing. 1989. Heat tolerance in tuber bearing solanum species: A protocol screeming. American Potato Journal 66: 63–74.CrossRefGoogle Scholar
  16. SAS version 9.4. 2012. SAS/STAT version 14.1, PROC GLIMMIX, SAS Institute, Inc., Cary, NC. USA.Google Scholar
  17. Smillie, R.M., S.E. Hetherington, C. Ochoa, and P. Malagamba. 1983. Tolerances of wild potato species from different altitudes to cold and heat. Planta 159: 112–118.CrossRefGoogle Scholar
  18. Stroup, W.W. 2015. Rethinking the analysis of non-Normal data in plant and soil science. Agronomy Journal 107 (2): 811–827.CrossRefGoogle Scholar
  19. USDA, ARS, National Genetic Resources Program. 2017. Germplasm resources information network- (GRIN). Https:// Accessed 1 Feb 2017.
  20. Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 6: 199–223.CrossRefGoogle Scholar
  21. Wang, P., and C. Hu. 1982. In vitro mass tuberization and virus free seed potato production in Taiwan. American Potato Journal 59: 33–37.CrossRefGoogle Scholar
  22. Woolfe, J.A., and S.V. Poats. 1987. The potato in the human diet. Cambridge: Cambride University Press.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2019

Authors and Affiliations

  • Marcio L. Guedes
    • 1
    • 2
  • Kathleen G. Haynes
    • 2
    Email author
  • Bryan T. Vinyard
    • 3
  • Cesar A. B. P. Pinto
    • 1
  1. 1.Department of BiologyUFLA- Federal University of LavrasLavrasBrazil
  2. 2.USDA-ARS, Genetic Improvement of Fruits and Vegetables LaboratoryBeltsvilleUSA
  3. 3.USDA-ARS, Statistics GroupBeltsvilleUSA

Personalised recommendations