Skip to main content
Log in

Diploid True Potato Seed: Relationships among Seed Weight, Germination, and Seedling Vigor

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The use of true potato seed (TPS) offers many advantages over the tuber pieces used in current potato cropping systems. Hybrid TPS based on diploid inbred lines has the potential to revolutionize the potato industry. In preparation for the transition to TPS, seed productivity traits must be characterized. The present study aims to provide data on seed germination rates and seedling vigor of diploid potatoes. The germplasm for this study consisted of families from a cross between DM1-3 and M6 that have been inbred to varying degrees. Seedling leaf area and percent germination were evaluated on 51 populations across six dates. Positive Pearson correlations were found between seed weight, percent germination, and seedling leaf area. Significant levels of variation were detected between lineages, generations, and lineage by generation interactions using ANOVA for leaf area and percent germination. Families that exhibited vigorous growth by 14-18 days post sowing continued to sustain high growth rates while families that did not exhibit vigorous growth at this time did not experience a drastic increase in growth rate. This timeframe will be an important stage in which to ensure a seedlings health in order to maximize its potential.

Resumen

El uso de semilla verdadera de papa (TPS) ofrece muchas ventajas sobre los fragmentos de tubérculo usados en los sistemas actuales del cultivo. Híbridos de TPS basados en líneas endogámicas diploides tienen el potencial de revolucionar la industria de la papa. Deben de caracterizarse particularidades de productividad de la semilla en preparación para la transición a TPS. El presente estudio pretende proporcionar datos en niveles de germinación de semilla y vigor de las plántulas de papas diploides. El germoplasma para este estudio consistió de familias de una cruza entre DM1-3 y M6 que han sido autocruzadas a varios grados. Se evaluaron el área foliar de las plántulas y el porcentaje de germinación en 51 poblaciones a lo largo de seis fechas. Se encontraron correlaciones positivas de Pearson entre el peso de semilla, porcentaje de germinación, y área foliar de la plántula. Se detectaron niveles significativos de variación entre líneas, generaciones, y entre sus interacciones usando ANAVA para área foliar y porcentaje de germinación. Las familias que exhibieron crecimiento vigoroso por 14-18 días post siembra continuaron el mantenimiento de altos niveles de crecimiento, mientras que familias que no exhibieron crecimiento vigoroso en ese período no experimentaron un incremento drástico en el nivel de crecimiento. Este lapso será un estado importante en el cual se asegura sanidad de la plántula para maximizar su potencial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almekinders, C.J.M., E. Chujoy, and G. Thiele. 2009. The use of true potato seed as pro-poor technology: The efforts of an international agricultural research institute to innovating potato production. Potato Research 52: 275–293.

    Article  Google Scholar 

  • Bac-Molenaar, J.A., D. Vreugdenhil, C. Grainer, and J. Keurentjes. 2015. Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. Journal of Experimental Botany 66: 5567–5580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamberg, J.B., and A.H. del Rio. 2006. Seedling transplant selection does not cause genetic shifts in genebank populations of inbred potato species. Crop Science 46: 424–427.

    Article  Google Scholar 

  • Birhman, R.K., and K. Hosaka. 2000. Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization. Genome 43: 459–502.

    Article  Google Scholar 

  • Brien, C.J., B. Berger, H. Rabie, and M. Tester. 2013. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems. Plant Methods 9: 2–21.

    Article  Google Scholar 

  • Casadesús, J., and D. Villegas. 2014. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. Journal of Integrative Plant Biology 56: 7–14.

    Article  PubMed  Google Scholar 

  • Cha, M., S. Kim, and T. Park. 2011. Effects of gibberellic acid treatment and light conditions on germination of true potato seed. African Journal of Agricultural Research 6: 6720–6725.

    Google Scholar 

  • Easlon, H., and A. Bloom. 2014. Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences 2: Apps. 1400033.

  • Egido, L., D. Navarro-Miró, V. Martinez-Heredia, P.E. Toorop, and P. Lannetta. 2017. Frontiers in Plant Science 8: 747.

    Article  Google Scholar 

  • El-Lithy, E.M., E. Clerkx, G. Ruys, M. Koornneef, and D. Vreugdenhil. 2004. Quantitative trauit locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiology 135: 444–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford, R.M., T.H. Thorne, W.D. Hitz, and R.T. Gigaquinta. 1984. Crop productivity and photoassimilate partitioning. Science 225: 801–808.

    Article  CAS  PubMed  Google Scholar 

  • Golmirzaie Ali, M. 1985. Identificacion of parental lines for development of true potato seed (TPS) population. American Potato Journal (abstr) 62: 427–428.

    Google Scholar 

  • Golmirzaie, A.M., and R. Ortiz. 2004. Diversity in reproductive characteristics of potato landraces and cultivars for producing true seed. Genetic Resources and Crop Evolution 51: 759–763.

    Article  Google Scholar 

  • Hacisalihoglu, G., and J. White. 2009. Determination of vigor differences in pepper seeds by using radicle area test. Acta Agriculturae Scandinavica 60: 335–340.

    Google Scholar 

  • Hardigan, M.A., F.P.E. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, and C.R. Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences 114: E9999–E10008.

  • Hosaka, K., and R.E. Hanneman Jr. 1998. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica 99: 191–197.

    Article  Google Scholar 

  • Jansky, S.H., Y.S. Chung, and P. Kittipadukal. 2014. M6: A diploid potato inbred line for use in breeding and genetics research. Journal of Plant Registrations 8: 195–199.

    Article  Google Scholar 

  • Jansky, S.H., et al. 2016. Reinventing potato as a diploid inbred line-based crop. Crop Science 58: 1412–1422.

    Article  CAS  Google Scholar 

  • Khan, N., R. Kazmi, L. Willems, A. van Heusden, W. Ligterink, and H. Hilhorst. 2012. Exploring the natural variation for seedling traits and their link with seed dimensions in tomato. PLoS One 7: e43991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana, E., and J.S. Singh. 2000. Influence of seed size on seedling growth of Albizia procera under different soil water levels. Annals of Botany 86: 1185–1192.

    Article  Google Scholar 

  • Kidane-Mariam, H.M., H.A. Mendoza, and R.O. Wissar. 1985. Performances of true potato seed families derived from intermating tetraploid parental lines. American Potato Journal 62: 643–652.

    Article  Google Scholar 

  • Koester, R.P., J.A. Skoneczka, T.R. Cary, B.W. Diers, and E.A. Ainsworth. 2014. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. Journal of Experimental Botany 65: 3311–3321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz, A., N. Ozbay, and B. Eser. 2004. Assessment of vigor characteristics of processing tomato cultivars by using various vigor tests. Asian Journal of Plant Sciences 3: 181–186.

    Article  Google Scholar 

  • Körner, O., J.M. Aaslyng, and A.U. Andreassen. 2007. Microclimate prediction for dynamic greenhouse climate control. Hort Science 42: 272–279.

    Article  Google Scholar 

  • Lindhout, P., D. Meijer, T. Schotte, R. Hutten, R. Visser, and H.J. van Eck. 2011. Towards F1 hybrid seed potato breeding. Potato Research 54: 301–312.

    Article  Google Scholar 

  • Martin, M. 1983a. (a). Field production of potatoes from true seed and its use in a breeding programme. Potato Research 26: 219–227.

    Article  Google Scholar 

  • Martin, M. 1983b. Techniques for successful field seedling of true potato seed. American Potato Journal 60: 245–259.

    Article  Google Scholar 

  • Meyer, R., M. Steinfath, J. Lisec, M. Becher, H. Wituchka-Wall, O. Törjék, O. Fiehn, Ä. Eckardt, L. Willmitzer, J. Selbig, and T. Altmann. 2007. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. PNAS 104: 4759–4764.

    Article  CAS  PubMed  Google Scholar 

  • Moles, A.T., and M. Westoby. 2006. Seed size and plant strategy across the whole life cycle. Oikos 113: 91–105.

    Article  Google Scholar 

  • Morshet, S., Z. Plaut, and N. Zieslin. 1976. Spatial variation in glasshouse rose flower production in relation to solar radiation. Scientia Horticulturae 5: 269–276.

    Article  Google Scholar 

  • Osone, Y., A. Ishida, and M. Tateno. 2008. Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. New Phytologist 179: 417–427.

    Article  CAS  PubMed  Google Scholar 

  • Pallais, N. 1987. True potato seed quality. Theoretical and Applied Genetics 73: 784–792.

    Article  CAS  PubMed  Google Scholar 

  • Pallais, N.E., N.Y. Espinola, R.M. Falcon, and R.S. Garcia. 1991. Improving seedling vigor in sexual seeds of potato under high temperature. Horticultural Science 26: 296–299.

    Google Scholar 

  • Panobianco, M., and J. Marcos-Filho. 2001. Evaluation of the physiological potential of tomato seeds by germination and vigor tests. Seed Technology 23: 151–161.

    Google Scholar 

  • Phumichai, C., M. Mori, A. Kobayashi, O. Kamijima, and K. Hosaka. 2005. Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome 48: 977–984.

    Article  CAS  PubMed  Google Scholar 

  • Pollock, M.B., and E.E. Roos. 1972. Seed and seedling vigor. In Seed biology: Importance, development, and germination, ed. T.T. Kozlowski, 313–387. New York: Academic Press, Inc.

    Chapter  Google Scholar 

  • Rosental, L., A. Perelman, N. Nevo, D. Toubiana, T. Samani, A. Batushansky, N. Sikron, Y. Saranga, and A. Fait. 2016. Environmental and genetic effects on tomato seed metabolic balance and its association with germination vigor. BMC Genomics 17: 1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, T.S., T. Nishizawa, and M.H. Ali. 2005. Studies in the utilization of true potato seeds: Productivity of tubers under subsequent clonal generations. Journal of Japanese Society of Horticultural Science 74: 376–382.

    Article  Google Scholar 

  • Roy, T.S., T. Nishizawa, and M.H. Ali. 2007. Seed quality as affected by nitrogen and potassium during true potato seed production. Asian Journal of Plant Sciences 6: 1269–1275.

    Article  CAS  Google Scholar 

  • Rudorf, W. 1958. The signifcance of wild species for potato breeding. Potato Research 1:10–20.

  • Skogerson, K., G.G. Harrigan, T.L. Reynolds, S.C. Halls, M. Ruebelt, A. Iandolino, A. Pandravada, K.C. Glenn, and O. Fiehn. 2010. Impact of genetics and environment on the metabolite composition of maize grain. Journal of Agricultural and Food Chemistry 58: 3600–3610.

    Article  CAS  PubMed  Google Scholar 

  • Villar, R., T. Marañón, J. Quero, P. Panadero, F. Arenas, and H. Lambers. 2005. Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. Plant and Soil 272: 11–27.

    Article  CAS  Google Scholar 

  • Vries, M., M. ter Maat, and P. Lindhout. 2016. The potential of hybrid potato for East-Africa. Open Agriculture 1: 151–156.

    Article  Google Scholar 

  • Willenborg, C.J., J.C. Wildenman, A.K. Miller, B.G. Rossnagel, and S.J. Shirtliffe. 2005. Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. Crop Science 45: 2023–2029.

    Article  Google Scholar 

  • Zhang, X., R.J. Hause, and J.O. Borevitz. 2012. Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana. G3 2: 29–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported by USDA NIFA 2014-67013-22434. The assistance of Kelley Manbeck (UW-Madison) and Andy Hamernik (USDA-ARS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley Jansky.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpers, R., Jansky, S. Diploid True Potato Seed: Relationships among Seed Weight, Germination, and Seedling Vigor. Am. J. Potato Res. 96, 217–224 (2019). https://doi.org/10.1007/s12230-018-9675-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-018-9675-8

Keywords

Navigation