American Journal of Potato Research

, Volume 95, Issue 6, pp 650–658 | Cite as

Optimization of Hairy Root Induction in Solanum tuberosum

  • Moehninsi
  • Duroy A. NavarreEmail author


An efficient protocol for hairy root induction in Solanum tuberosum was established using Agrobacterium rhizogenes. Transformation of Desiree was more efficient than with Shepody or Purple Majesty. Transformation efficiency of Desiree tuber discs (97% transformation efficiency) was higher in comparison to root (67% transformation efficiency), stem (61% transformation efficiency) and leaf (14% transformation efficiency) explants. Bacterial density, culture parameters, explant type, and genotype influenced the transformation efficiency, as well as the growth of hairy roots. Hairy root transformation efficiency in explants treated with acetosyringone was enhanced from 72 to 89% in Purple Majesty tubers and 56 to 80% in roots during co-cultivation. The growth rate of hairy roots from tuber discs was about 5 times greater than that of hairy roots from leaves. Tuber hairy roots were highly resistant to kanamycin in the absence of NPT II. This study describes the efficient generation of hairy roots in different potato tissues and cultivars that can provide a fast method to generate transformed tissue or be used for production of secondary metabolites.


Potatoes Agrobacterium rhizogenes Hairy roots 


Se estableció un protocolo eficiente para la inducción de pelos radicales en Solanum tuberosum usando Agrobacterium rhizogenes. Fue más eficiente la transformación de Desiree que con Shepody o Purple Majesty. La eficiencia en la transformación de explantes de discos de tubérculo de Desiree (97% de eficiencia de la transformación) fue más alta en comparación al de raíz (67% de eficiencia de transformación), al del tallo (61% de eficiencia de transformación) y al de hoja (14% de eficiencia en transformación). La densidad de las bacterias, los parámetros del cultivo, el tipo de explante y el genotipo, influenciaron la eficiencia de la transformación, así como el crecimiento de los pelos radicales. La eficiencia de la transformación a pelos radicales en los explantes tratados con acetosyringone se incrementó de 72% a 89% en tubérculos de Purple Majesty, y de 56% a 80% en raíces durante el co-cultivo. El nivel de crecimiento de pelos radicales de discos de tubérculo fue cerca de cinco veces mayor que el de pelos radicales de hojas. Los de tubérculo fueron altamente resistentes a kanamicina en la ausencia de NPT II. Este estudio describe la eficiente generación de pelos radicales en diferentes tejidos y variedades de papa que pudieran aportar un método rápido para generar tejido transformado o usarse para la producción de metabolitos secundarios.



We thank Joanne Holden for help with the tissue culture and maintenance.

Compliance with Ethical Standards


The use of trade, firm, or corporation names in this publication (or page) is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

Supplementary material

12230_2018_9671_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)
12230_2018_9671_MOESM2_ESM.pptx (400 kb)
ESM 2 (PPTX 399 kb)


  1. Artsaenko, O., B. Kettig, U. Fiedler, U. Conrad, and K. During. 1998. Potato tubers as a biofactory for recombinant antibodies. Molecular Breeding 4: 313–319.CrossRefGoogle Scholar
  2. Baque, M.A., E.J. Hahn, K.Y. Paek. 2010. Induction mechanism of adventitious root from leaf explants of Morinda citrifolia as affected by auxin and light quality. In Vitro Cellular & Developmental Biology Plant 46:71–80.CrossRefGoogle Scholar
  3. Barik, D.P., U. Mohapatra, and P.K. Chand. 2005. Transgenic grasspea (Lathyrus sativus L.): Factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Reports 24: 523–531.CrossRefPubMedGoogle Scholar
  4. Brijwal, L., and S. Tamta. 2015. Agrobacterium rhizogenes mediated hairy root induction in endangered Berberis aristata DC. SpringerPlus 4: 1–10.CrossRefGoogle Scholar
  5. Cao, D., W. Hou, S. Song, H. Sun, C. Wu, Y. Gao, and T. Han. 2009. Assessment of conditions affecting Agrobacterium rhizogenes mediated transformation of soybean. Plant Cell Tissue and Organ Culture 96: 45–52.CrossRefGoogle Scholar
  6. Cardarelli, M., L. Spano, D. Mariotti, M.L. Mauro, V. Slyus, and P. Constantino. 1987. The role of auxin in hairy root induction. Molecular Genetics and Genomics 208: 457–480.CrossRefGoogle Scholar
  7. Chabaud, M., Fd. Carvalho-Niebel, and D.G. Barker. 2003. Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Reports 22: 46–51.CrossRefPubMedGoogle Scholar
  8. Chaudhury, A., and M. Pal. 2010. Induction of shikonin production in hairy root cultures of Arnebia hispidissima via Agrobacterium rhizogenes-mediated genetic transformation. Journal of Crop Science and Biotechnology 13: 99–106.CrossRefGoogle Scholar
  9. Cheng, M., B.A. Lowe, T.M. Spencer, X. Ye, and C.L. Armstrong. 2004. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell and Developmental Biology Plant 40: 31–45.CrossRefGoogle Scholar
  10. Cho, H.J., S.K. Farrand, G.R. Noel, and J.M. Widhoml. 2000. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210: 195–204.CrossRefPubMedGoogle Scholar
  11. Choffe, K.L., J.M.R. Victor, S.J. Murch, and P.K. Saxena. 2000. In vitro regeneration of Echinacea purpurea L. direct somatic embryogenesis and indirect shoot organogenesis in petiole culture. In Vitro Cell and Developmental Biology Plant 36: 30–36.CrossRefGoogle Scholar
  12. Coutu, C., J.E. Brandle, D.C.W. Brown, K. Brown, J.A. Simmonds, B.L.A. Miki, and D.D. Hegedus. 2007. pORE: A modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Research 16: 771–781.CrossRefPubMedGoogle Scholar
  13. Crane, C., E. Wright, R.A. Dixon, and Z.Y. Wang. 2006. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens transformed roots and Agrobacterium rhizogenes transformed hairy roots. Planta 223: 1344–1354.CrossRefPubMedGoogle Scholar
  14. Deboer K.D., J.C. Lye, C.D. Aitken, A.K.K. Su, J.D. Hamill. 2009. The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Molecular Biology 69: 299–312.CrossRefPubMedGoogle Scholar
  15. De Buck, S., A. Jacobs, M. Van Montagu, and A. Depicker. 1998. Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts. Molecular Plant-Microbe Interactions 11: 449–457.CrossRefPubMedGoogle Scholar
  16. De Wilde, C., K. Peeters, A. Jacobs, I. Peck, and A. Depicker. 2002. Expression of antibodies and fab fragments in transgenic potato plants: A case study for bulk production in crop plants. Molecular Breeding 9: 271–282.CrossRefGoogle Scholar
  17. Difco Laboratories. 1974. Difco manual of dehydrated culture media and reagents for microbiological and clinical laboratory procedures. 9th ed., Detroit, MI.Google Scholar
  18. Flores, H.E., M. Hoy, and J. Pickard. 1987. Secondary metabolites from root cultures. Trends in Biotechnology 5: 64–69.CrossRefGoogle Scholar
  19. Folta, K.M., A. Dhingra, L. Howard, P. Stewart, and C.K. Chandler. 2006. Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224: 1058–1067.CrossRefPubMedGoogle Scholar
  20. Gaudin, V., T. Vrain, and L. Jouanin. 1994. Bacterial genes modifying hormonal balances in plants. Plant Physiology and Biochemistry 32: 11–29.Google Scholar
  21. Geier, T., and R.S. Sangwan. 1996. Histology and chimeral segregation reveal cell-specific differences in the competence for stem regeneration and agrobacterium-mediated transformation in Kohleria internode explants. Plant Cell Reports 15: 386–390.CrossRefPubMedGoogle Scholar
  22. Georgiev, M.I., A.I. Pavlov, and T. Bley. 2007. Hairy root type plant in vitro systems as sources of bioactive substances. Applied Microbiology and Biotechnology 74: 1175–1185.CrossRefPubMedGoogle Scholar
  23. Guellec, V., C. David, M. Branchard, and J. Tempe. 1990. Agrobacterium rhizogenes mediated transformation of grapevine (Vitis vinifera L.). Plant Cell. Tissue and Organ Culture 24: 91–95.Google Scholar
  24. Hamill, J.D., and J.A. Lidgett. 1997. Hairy root cultures - opportunities and key protocols for studies in metabolic engineering. In Hairy roots - culture and applications, ed. P.M. Doran, 1–31. Netherlands: Harwood Academic Publishers.Google Scholar
  25. Hansen, G., and M.S. Wright. 1999. Recent advances in the transformation of plants. Trends in Plant Science 4: 226–231.CrossRefPubMedGoogle Scholar
  26. Harvey, J.J., J.E Lincoln, D.G. Gilchrist. 2008. Programmed cell death suppression in transformed plant tissue by tomato cDNAs identified from an Agrobacterium rhizogenes-based functional screen. Molecular Genetics and Genomics 279: 509–521.CrossRefPubMedGoogle Scholar
  27. Ishida, J.K., S. Yoshida, M. Ito, S. Namba, and K. Shirasu. 2011. Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6: e25802.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jian, B., W. Hou, C. Wu, B. Liu, W. Liu, S. Song, Y. Bi, and T. Han. 2009. Agrobacterium rhizogenes-mediated transformation of super root derived Lotus corniculatus plants: A valuable tool for functional genomics. BMC Plant Biology 9: 1–14.CrossRefGoogle Scholar
  29. Joubert, P., D. Beaupere, P. Lelievre, A. Wadouachi, R.S. Sangwan, and B.S. Sangwan-Norreel. 2002. Effects of phenolic compounds on agrobacterium vir genes and gene transfer induction-a plausible molecular mechanism of phenol binding protein activation. Plant Science 162: 733–743.CrossRefGoogle Scholar
  30. Kajikawa, M., N. Hirai, T. Hashimoto. 2009. A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Molecular Biology 69: 287–298.CrossRefPubMedGoogle Scholar
  31. Kim, Y.J., B.E. Wyslouzil, and P.J. Weathers. 2002. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular and Developmental Biology-Plant 38: 1–10.CrossRefGoogle Scholar
  32. Komaraiah, P., G.V. Reddy, P. Srinivas Reddy, A.S. Raghavendra, S.V. Ramakrishna, and P. Reddanna. 2003. Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum. Biotechnology Letters 25: 593–597.CrossRefPubMedGoogle Scholar
  33. Koroch, A., H.R. Juliani, J. Kapteyn, and J.E. Simon. 2002. In vitro regeneration of Echinacea purpurea from leaf explants. Plant Cell, Tissue and Organ Culture 69: 79–83.CrossRefGoogle Scholar
  34. Kumar, G.B.S., T.R. Ganapathi, L. Srinivas, C.J. Revathi, and V.A. Bapat. 2006. Plant Science 170: 918–925.CrossRefGoogle Scholar
  35. Lincoln, J.E., C. Richael, B. Overduin, K. Smith, R. Bostock, D.G. Gilchrist. 2002. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proceedings of the National Academy of Sciences USA 99: 15217–15221.CrossRefGoogle Scholar
  36. Mazarei, M., Z. Ying, and R.L. Houtz. 1998. Functional analysis of the rubisco large subunit N-methyltransferase promoter from tobacco and its regulation by light in soybean hairy roots. Molecular Plant Microbe Interactions 11: 449–457.CrossRefGoogle Scholar
  37. Montoro, P., W. Rattana, V. Pujade-Renaud, N. Michaux-Ferrieere, Y. Monkolsook, R. Kanthapura, and S. Adunsadthapong. 2003. Production of Hevea brasiliensis transgenic embryogenic callus lines by agrobacterium tumefaciens: Roles of calcium. Plant Cell Reports 21: 1095–1102.CrossRefPubMedGoogle Scholar
  38. Mozahim, K., A.L. Mallah, H.M. Masyab. 2014. Expression of GUS and GFP reporter genes in transgenic hairy roots of tomato and potato plants via Agrobacterium rhizogenes mediated transformation. Australian Journal of Basic & Applied Science 8: 234–239.Google Scholar
  39. Mukundan, U., and M.A. Hjortso. 1990. Effect of fungal elicitor on thiophene production in hairy root cultures of Tagetes patula. Applied Microbiology and Biotechnology 33: 145–114.CrossRefGoogle Scholar
  40. Nemoto, K., M. Hara, M. Suzuki, H. Seki, A. Oka, T. Muranaka, and Y. Mano. 2009. Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signaling & Behavior 4: 1145–1147.CrossRefGoogle Scholar
  41. Ono, N.N. and L. Tian. 2011. The multiplicity of hairy root cultures: prolific possibilities. Plant Science 180: 439–446.CrossRefPubMedGoogle Scholar
  42. Park, S.U., and P. Facchini. 2001. Somatic embryogenesis from embryogenic cell suspension cultures of California poppy, Eschscholzia californica Cham. In Vitro Cellular & Developmental Biology. Plant 37: 35–39.CrossRefGoogle Scholar
  43. Petit, A., C. David, G.A. Dahl, J.G. Ellis, P. Guyonp, F. Casse-Delbart, and J. Tempe. 1983. Further extension of the opine concept: Plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Molecular and General Genetics 190: 204–214.CrossRefGoogle Scholar
  44. Sambrook, J., and R.W. Russell. 2001. Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  45. Savka, M.A., B. Ravillion, G.R. Noel, and S.K. Farrand. 1990. Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80: 503–508.CrossRefGoogle Scholar
  46. Setamam, M.N., J.N. Sidik, A.Z. Rahman, and C.R. Che Mohd Zain. 2014. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants. BMC Research Notes 30: 414.CrossRefGoogle Scholar
  47. Sevon, N., C. Oksman, and M. Kirsi. 2002. Agrobacterium rhizogenes mediated transformation: Root cultures as a source of alkaloids. Planta Medica 68: 859–868.CrossRefPubMedGoogle Scholar
  48. Sharifi, M.H., A. Fotokian, S. Kordenaeij, T. Ramazani, S.M. Hasanlu, S.M. Khayyam Nikoei, D. Davoodi, B. Nakhoda, G. Mohammadinejad. 2014. Effects of growth regulators and explants on callus induction and organogenesis in Hypericum perforatum. Acta Horticulturae 1023: 241–247.Google Scholar
  49. Sivanesan, I., and B. Ryong Jeong. 2009. Induction and establishment of adventitious and hairy root cultures of Plumbago zeylanica L. African Journal of Biotechnology 8: 5294–5300.Google Scholar
  50. Srivastava, S., and A.K. Srivastava. 2007. Hairy root culture for mass-production of high-value secondary metabolites. Critical Reviews in Biotechnology 27: 29–43.CrossRefPubMedGoogle Scholar
  51. Staniszewska, I., A. Królicka, E. Malinski, E. Lojkowska, and J. Szafranek. 2003. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme and Microbial Technology 33: 565–568.CrossRefGoogle Scholar
  52. Visser, R.G., E. Jacobsen, B. Witholt, and W.J. Feenstra. 1989. Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in agrobacterium rhizogenes. Theoretical and Applied Genetics 78: 594–600.CrossRefPubMedGoogle Scholar
  53. Washida, D., K. Shimomura, K.M. Takido, and S. Kitanaka. 2004. Auxin affected ginsenoside production and growth of hairy roots of Panax hybrid. Biological and Pharmaceutical Bulletin 27: 657–660.CrossRefPubMedGoogle Scholar
  54. Wiśniewska, A., J. Dąbrowska-Bronk, K. Szafrański, S. Fudali, M. Święcicka, M. Czarny, A. Wilkowska, K. Morgiewicz, J. Matusiak, M. Sobczak, and M. Filipecki. 2013. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis. Transgenic Research 22: 557–569.CrossRefPubMedGoogle Scholar
  55. Yamazaki, Y., M. Kitajima, M. Arita, H. Takayama, H. Sudo, M. Yamazaki, N. Aimi, K. Saito. 2004. Biosynthesis of Camptothecin. In Silico and in Vivo Tracer Study from [1-13C] Glucose. Plant Physiology 134: 161–170.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Irrigated Agricultural Research and Extension CenterWashington State UniversityProsserUSA
  2. 2.USDA-Agricultural Research ServiceYakima Agricultural Research LaboratoryProsserUSA

Personalised recommendations