Advertisement

American Journal of Potato Research

, Volume 95, Issue 5, pp 575–583 | Cite as

Constitutively Expressed RB Gene Confers a High Level but Unregulated Resistance to Potato Late Blight

  • Lei Wu
  • Saowapa Duangpan
  • Pudota B. Bhaskar
  • Susan M. Wielgus
  • Jiming Jiang
Article
  • 201 Downloads

Abstract

The RB gene, which was cloned from the wild potato species Solanum bulbocastanum, confers a high level of broad spectrum resistance to various strains of Phytophthora infestans, the causal agent of potato late blight. The level of RB-mediated resistance is correlated with the amount of RB transcripts in transgenic potato lines containing RB gene(s) driven by its native promoter. To assess whether the level of RB-mediated resistance can be further enhanced by overexpression of the RB gene, multiple transgenic potato lines containing RB gene(s) driven by the cauliflower mosaic virus (CaMV) 35S promoter were developed. Surprisingly, all 35S::RB transgenic lines with one or several copies of the RB gene showed a similar level of late blight resistance. In parallel, a statistically similar amount of RB transcript was observed among all resistant transgenic lines with different copy numbers of the RB gene. In addition, the levels of RB gene transcription in the 35S::RB transgenic potato lines were the same or lower than in transgenic lines containing the RB gene driven by its native promoter. Thus, developing transgenic potato lines using RB with the native promoter will be the best approach to deploy this gene for combating late blight.

Keywords

RB gene 35S promoter Transgenic potato Late blight resistance 

Resumen

El gen RB, que fue clonado de la especie silvestre de papa Solanum bulbocastanum, confiere un alto nivel y amplio espectro de resistencia a variantes de Phytophthora infestans, el agente causal del tizón tardío de la papa. El nivel de la resistencia mediada por el RB esta correlacionada con la cantidad de transcriptos de RB en líneas de papa transgénica que contiene gen(es) RB impulsados por el promotor nativo. Para evaluar si el nivel de resistencia mediada por RB puede aumentarse más mediante su sobreexpresión, se desarrollaron múltiples líneas transgénicas de papa con gen(es) RB conducidos por el virus mosaico de la coliflor (CaMV) 35S como promotor. Sorpresivamente, todas las líneas transgénicas 35S::RB con una o varias copias del gen RB mostraron un nivel similar de resistencia al tizón tardío. Paralelamente, se observó una cantidad similar estadísticamente del transcripto RB entre todas las líneas transgénicas resistentes con diferente número de copias del gen RB. Además, los niveles de transcripción del gen RB en las líneas transgénicas de papa 35S::RB fueron los mismos o más bajos que en las líneas transgénicas con el gen RB impulsado por su promotor nativo. De aquí que el desarrollo de líneas transgénicas de papa usando RB con su promotor nativo será la mejor estrategia para utilizar este gen en el combate al tizón tardío.

Notes

Acknowledgements

We thank James Bradeen and Dennis Halterman for valuable comments on the manuscript. This research was supported partially by Hatch funds to J.J. L.W. was partially supported by National Natural Science Foundation of China (NO.31300127) and Research Program of science and technology at Universities of Inner Mongolia Autonomous Region (NJZY12002). The experiments comply with the current laws of United States of America and People’s Republic of China in which they were performed.

References

  1. Bendahmane, A., G. Farnham, P. Moffett, and D.C. Baulcombe. 2002. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. The Plant Journal 32: 195–204.CrossRefPubMedGoogle Scholar
  2. Bhaskar, P.B., J.A. Raasch, L.C. Kramer, P. Neumann, S.M. Wielgus, S. Austin-Phillips, and J.M. Jiang. 2008. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biology 8: 8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bradeen, J.M., M. Iorizzo, D.S. Mollov, J. Raasch, L.C. Kramer, B.P. Millett, S. Austin-Phillips, J.M. Jiang, and D. Carputo. 2009. Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. Molecular Plant-Microbe Interactions 22: 437–446.CrossRefPubMedGoogle Scholar
  4. Cai, D.G., M. Kleine, S. Kifle, H.J. Harloff, N.N. Sandal, K.A. Marcker, R.M. KleinLankhorst, E.M.J. Salentijn, W. Lange, W.J. Stiekema, U. Wyss, F.M.W. Grundler, and C. Jung. 1997. Positional cloning of a gene for nematode resistance in sugar beet. Science 275: 832–834.CrossRefPubMedGoogle Scholar
  5. Cao, Y.L., X.H. Ding, M. Cai, J. Zhao, Y.J. Lin, X.H. Li, C.G. Xu, and S.P. Wang. 2007. Expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177: 523–533.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Champouret, N., K. Bouwmeester, H. Rietman, T. van der Lee, C. Maliepaard, A. Heupink, P.J.I. van de Vondervoort, E. Jacobsen, R.G.F. Visser, E.A.G. van der Vossen, F. Govers, and V.G.A.A. Vleeshouwers. 2009. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Molecular Plant-Microbe Interactions 22: 1535–1545.CrossRefPubMedGoogle Scholar
  7. Chen, Y., and D.A. Halterman. 2011. Phenotypic characterization of potato late blight resistance mediated by the broad-spectrum resistance gene RB. Phytopathology 101 (2): 263–270.CrossRefPubMedGoogle Scholar
  8. Chen, Y., Z. Liu, and D.A. Halterman. 2012. Molecular determinants of resistance activation and suppression by Phytophthora infestants effector IPI-O. PLoS Pathogens 8: e1002595.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen, X., D. Lewandowska, M.R. Armstrong, K. Baker, T.-Y. Lim, M. Bayer, B. Harrower, K. McLean, F. Jupe, K. Witek, A.K. Lees, J.D. Jones, G.J. Bryan, and I. Hein. 2018. Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theoretical and Applied Genetics 131: 1287–1297.Google Scholar
  10. Colton, L.M., H.I. Groza, S.M. Wielgus, and J.M. Jiang. 2006. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Science 46: 589–594.CrossRefGoogle Scholar
  11. Cruickshank, G., H.E. Stewart, and R.L. Wastie. 1982. An illustrated assessment key for foliage blight of potatoes. Potato Research 25: 213–214.CrossRefGoogle Scholar
  12. Gao, L.L., Z.J. Tu, B.P. Millett, and J.M. Bradeen. 2013. Insight into organ-specific pathogen dedense responses in plants: RNA-seq analysis of potato tuber-Phytopghtora infestans interactions. BMC Genomics 14: 340.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Grunwald, N. J., and W. G. Flier. 2005. The biology of Phytophthora infestans at its center of origin. Annual Review of Phytopathology 43: 171–190.Google Scholar
  14. Halterman, D.A., F.S. Wei, and R.P. Wise. 2003. Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiology 131: 558–567.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Halterman, D.A., L.C. Kramer, S. Wielgus, and J.M. Jiang. 2008. Performance of transgenic potato containing the late blight resistance gene RB. Plant Disease 92: 339–343.CrossRefGoogle Scholar
  16. Halterman, D.A., Y. Chen, J. Sopee, J. Berduo-Sandoval, and A. Sanchez-Perez. 2010. Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance. PLoS One 5: e10536.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haverkort, A.J., P.C. Struik, R.G.F. Visser, and E. Jacobsen. 2009. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research 52: 249–264.CrossRefGoogle Scholar
  18. Helgeson, J.P., J.D. Pohlman, S. Austin, G.T. Haberlach, S.M. Wielgus, D. Ronis, L. Zambolim, P. Tooley, J.M. McGrath, R.V. James, and W.R. Stevenson. 1998. Somatic hybrids between Solanum bulbocastanum and potato: a new source of resistance to late blight. Theoretical & Applied Genetics 96: 738–742.CrossRefGoogle Scholar
  19. Kramer, L.C., M.J. Choudoir, S.M. Wielgus, P.B. Bhaskar, and J.M. Jiang. 2009. Correlation between transcript abundance of the RB gene and the level of the RB-mediated late blight resistance in potato. Molecular Plant-Microbe Interactions 22: 447–455.CrossRefPubMedGoogle Scholar
  20. Kuhl, J.C., K. Zarka, J. Coombs, W.W. Kirk, and D.S. Douches. 2007. Late blight resistance of RB transgenic potato lines. Journal of the American Society for Horticultural Science 132: 783–789.Google Scholar
  21. Levy, M., O. Edelbaum, and I. Sela. 2004. Tobacco mosaic virus regulates the expression of its own resistance gene N. Plant Physiology 135: 2392–2397.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu, J.J., and A.K.M. Ekramoddoullah. 2011. Genomic organization, induced expression and promoter activity of a resistance gene analog (PmTNL1) in western white pine (Pinus monticola). Planta 233: 1041–1053.CrossRefPubMedGoogle Scholar
  23. Lokossou, A.A., T.H. Park, G. van Arkel, M. Arens, C. Ruyter-Spira, J. Morales, S.C. Whisson, P.R.J. Birch, R.G.F. Visser, E. Jacobsen, and E.A.G. van der Vossen. 2009. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Molecular Plant-Microbe Interactions 22: 630–641.CrossRefPubMedGoogle Scholar
  24. Mohr, T.J., N.D. Mammarella, T. Hoff, B.J. Woffenden, J.G. Jelesko, and J.M. McDowell. 2010. The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. Molecular Plant-Microbe Interactions 23: 1303–1315.CrossRefPubMedGoogle Scholar
  25. Niederhauser, J.S., and W.R. Millis. 1953. Resistance of Solanum species to Phytophthora infestans in Mexico. Phytopathology 43: 456–457.Google Scholar
  26. Nowicki, M., M.R. Foolad, M. Nowakowska, and E.U. Kozik. 2012. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease 96: 4–17.CrossRefGoogle Scholar
  27. Oh, S.K., C. Young, M. Lee, R. Oliva, T.O. Bozkurt, L.M. Cano, J. Win, J.I.B. Bos, H.Y. Liu, M. van Damme, W. Margan, D. Choi, E.A.G. Van der Vossen, V. Vleeshouwers, and S. Kamoun. 2009. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. The Plant Cell 21: 2928–2947.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Oldroyd, G.E.D., and B.J. Staskawicz. 1998. Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences of the United States of America 95: 10300–10305.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oosumi, T., D.R. Rockhold, M.M. Maccree, K.L. Deahl, K.F. McCue, and W.R. Belknap. 2009. Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes. American Journal of Potato Research 86: 456–465.CrossRefGoogle Scholar
  30. Radwan, O., S. Mouzeyar, P. Nicolas, and M.F. Bouzidi. 2005. Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmopara halstedii. Journal of Experimental Botany 56: 567–575.CrossRefPubMedGoogle Scholar
  31. Rodewald, J., and B. Trognita. 2013. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Molecular Plant Pathology 7: 740–757.CrossRefGoogle Scholar
  32. Sambrook, J., and D.W. Russell. 2001. Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  33. Song, J., J.M. Bradeen, S.K. Naess, J.A. Raasch, S.M. Wielgus, G.T. Haberlach, J. Liu, H. Kuang, S. Austin-Phillips, C.R. Buell, J.P. Helgeson, and J. Jiang. 2003. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America 100: 9128–9133.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Stokes, T.L., B.N. Kunkel, and E.J. Richards. 2002. Epigenetic variation in Arabidopsis disease resistance. Genes & Development 16: 171–182.CrossRefGoogle Scholar
  35. Stupar, R.M., J.Q. Song, A.L. Tek, Z.K. Cheng, F.G. Dong, and J.M. Jiang. 2002. Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162: 1435–1444.PubMedPubMedCentralGoogle Scholar
  36. van der Vossen, E., A. Sikkema, B.L. Hekkert, J. Gros, P. Stevens, M. Muskens, D. Wouters, A. Pereira, W. Stiekema, and S. Allefs. 2003. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. The Plant Journal 36: 867–882.CrossRefPubMedGoogle Scholar
  37. van der Vossen, E.A.G., J. Gros, A. Sikkema, M. Muskens, D. Wouters, P. Wolters, A. Pereira, and S. Allefs. 2005. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal 44: 208–222.CrossRefPubMedGoogle Scholar
  38. Wastie, R.L. 1991. Phytophthora infestans, the cause of late blight of potato - breeding for resistance. San Diego: Academic Press.Google Scholar
  39. Witek, K., F. Jupe, A.I. Witek, D. Baker, M.D. Clark, and J.D.G. Jone. 2016. Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRTRT sequencing. Nature Biotechnology 34: 656–660.CrossRefPubMedGoogle Scholar
  40. Xiao, S.Y., S. Ellwood, O. Calis, E. Patrick, T.X. Li, M. Coleman, and J.G. Turner. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118–120.CrossRefPubMedGoogle Scholar
  41. Yoshimura, S., U. Yamanouchi, Y. Katayose, S. Toki, Z.X. Wang, I. Kono, N. Kurata, M. Yano, N. Iwata, and T. Sasaki. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America 95: 1663–1668.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yuan, J.S., A. Reed, F. Chen, and C.N. Stewart. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics 7: 85.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.Inner Mongolia Potato Engineering and Technology Research CentreInner Mongolia UniversityHohhotPeople’s Republic of China
  2. 2.IMU-UW Potato Research CenterInner Mongolia UniversityHohhotPeople’s Republic of China
  3. 3.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of Plant Science, Faculty of Natural ResourcesPrince of Songkla UniversitySongklaThailand
  5. 5.Department of Plant BiologyMichigan State UniversityEast LansingUSA
  6. 6.Department of HorticultureMichigan State UniversityEast LansingUSA

Personalised recommendations