Advertisement

American Journal of Potato Research

, Volume 95, Issue 5, pp 504–512 | Cite as

Assessment of Tolerance to Zebra Chip in Potato Breeding Lines under Different Insecticide Regimes in New Zealand

  • John A. D. Anderson
  • Peter J. Wright
  • Peter Jaksons
  • Aleise J. Puketapu
  • Graham P. Walker
Article

Abstract

Fourteen potato lines, including some indicating reduced susceptibility to zebra chip (ZC), were assessed in trials over three seasons at Pukekohe (New Zealand) under three insecticide regimes: FULL (pre-plant plus 14–15 foliar applications through the season), REDUCED (4–5 foliar applications) and NIL (no insecticide). In all three seasons there were consistent reductions in tuber yield, dry matter and tuber size from the FULL to the REDUCED to the NIL insecticide treatment. ZC severity recorded in crisp slices before and after frying tended to be highest in the NIL treatment and lowest in the FULL treatment. All lines had symptoms of ZC in both raw and fried crisp samples but there were clear differences between lines, with some showing significantly fewer symptoms of ZC than current widely grown potato lines in New Zealand. The potential of these ZC-symptom tolerant lines, both as parents in a breeding programme and for possible release, is discussed. CLso titre of individual tubers of three lines was also determined from the 2014 NIL plots using qPCR. There was little relationship between CLso titres and ZC scores in either raw or fried crisp slices both within and between lines.

Keywords

Zebra chip Tomato potato psyllid Bactericera cockerelli Liberibacter Cultivar tolerance Potato breeding 

Resumen

Se evaluaron 14 líneas de papa, incluyendo algunas que indicaron susceptibilidad reducida a la papa rayada (ZC, por sus siglas en inglés), en ensayos durante tres ciclos de cultivo en Pukekohe (Nueva Zelanda), bajo tres regímenes de insecticidas: COMPLETO (previo a la siembra más 14–15 aplicaciones foliares a lo largo del ciclo), REDUCIDO (4–5 aplicaciones foliares) y NULO (sin insecticidas). En los tres ciclos hubo reducciones consistentes en rendimiento de tubérculo, peso seco y tamaño de tubérculo, desde el tratamiento con insecticida COMPLETO, al REDUCIDO, al NULO. La severidad de ZC registrada en rebanadas crujientes antes y después del freído tendieron a ser las más altas en el tratamiento NULO y las más bajas en el COMPLETO. Todas las líneas tuvieron síntomas de ZC, tanto en muestras crudas como en fritas, pero hubo claras diferencias entre líneas, con algunas mostrando significativamente menos síntomas de ZC que las líneas ampliamente cultivadas ahora en Nueva Zelanda. Se discute el potencial de estas líneas tolerantes a los síntomas de ZC, tanto como progenitores en un programa de mejoramiento o como posibles liberaciones. También se determinó el título de CLso de tubérculos individuales de tres líneas de los lotes del tratamiento NULO de 2014 usando PCRq. Hubo poca relación entre los títulos de CLso y los valores de ZC en rebanadas crudas y fritas, tanto dentro como entre líneas.

Notes

Acknowledgements

We wish to thank Carolyn Edwards and Moe Jeram for their technical support in both the field and laboratory, and Robin Gardner-Gee and Steve Lewthwaite for their advice and support. We also wish to thank Jessica Dohmen-Vereijssen and Gail Timmerman-Vaughan for suggesting improvements to the paper.

Funding

This work was largely funded by The New Zealand Institute for Plant & Food Research Limited/Potatoes New Zealand joint potato breeding programme.

References

  1. Anderson, J. A. D., G. P. Walker, P. A. Alspach, M. Jeram and P. J. Wright. 2013.Google Scholar
  2. Assessment of susceptibility to zebra chip and Bactericera cockerelli of selected potato cultivars under different insecticide regimes in New Zealand. American Journal of Potato Research 90: 58–65.Google Scholar
  3. Beard, S.S., A.R. Pitman, S. Kraberger, and I.A.W. Scott. 2013. SYBR green real-time quantitative PCR for the specific detection and quantification of ‘Candidatus Liberibacter solanacearum’ in field samples from New Zealand. European Journal of Plant Pathology 136 (1): 203–215.CrossRefGoogle Scholar
  4. Butler, D. (2009). asreml: asreml() fits the linear mixed model. R package version 3.00.Google Scholar
  5. Department of Primary Industries and Regional Development. 2017. Tomato Potato Psyllid. https://www.agric.wa.gov.au/tpp. (accessed 26 April 2017).
  6. Diaz-Montano, J., B.G. Vindiola, N. Drew, R.G. Novy, J.C. Miller, and J.T. Trumble. 2014. Resistance of selected potato genotypes to the potato psyllid (Hemiptera: Triozidae). American Journal of Potato Research 91: 363–440.CrossRefGoogle Scholar
  7. Guenthner, J., G. Greenway, J. Goolsby, and D. Henne. 2012. Zebra chip economics. In Proceedings of the 12th Annual Zebra Chip Reporting Session, ed. F. Workneh, A. Rashed and C. M. Rush. San Antonio, TX (October 30–November 2).Google Scholar
  8. Kale, A. 2011. Report on the economic and business impacts of the potato psyllid on the potato industry. http://www.potatoesnz.co.nz/users/Image/Downloads/PDFs/Potato%20Economic%20survey%20Report%20Jun%202011_V2.pdf (accessed 1 March 2011).
  9. Levy, J.G., D.C. Scheuring, J.W. Koym, D.C. Henne, C. Tamborindeguy, E. Pierson, and J.C. Miller. 2015. Investigations on putative zebra chip tolerant potato selections. American Journal of Potato Research 92: 417–425.CrossRefGoogle Scholar
  10. Liefting, L.W., Z.C. Rez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.CrossRefGoogle Scholar
  11. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefPubMedGoogle Scholar
  12. Munyaneza, J.E., J.L. Buchman, V.G. Sengoda, T.W. Fisher, and C.C. Pearson. 2011. Susceptibility of selected potato varieties to zebra chip potato disease. American Journal of Potato Research 88: 435–440.CrossRefGoogle Scholar
  13. R Development Core Team. 2014 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
  14. Raman, K.V., A.M. Golmirzaie, M. Palacios, and J. Tenorio. 1994. Inheritance of resistance to insects and mites. In Potato Genetics, ed. J.E. Bradshaw and G.R. Mackay, 447–463. Oxon: CAB international.Google Scholar
  15. Rashed, A., F. Workneh, L. Paetzold, J. Gray, and C.M. Rush. 2014. Zebra chip disease development in relation to plant age and time of ‘Candidatus Liberibacter solanacearum’ infection. Plant Disease 98: 24–31.CrossRefGoogle Scholar
  16. Secor, G.A., and W. Rivera-Varas. 2004. Emerging diseases of cultivated potato and their impact on Latin America. Revista Latinoamericana de la Papa (Suplemento) 1: 1–8.Google Scholar
  17. Teulon, D.A.J., P.J. Workman, K.L. Thomas, and M.C. Nielsen. 2009. Bactericera cockerelli: Incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand. Plant Protection 62: 136–144.Google Scholar
  18. Walker, G.P., F.H. MacDonald, N.J. Larsen, and A.R. Wallace. 2011. Monitoring of tomato-potato psyllid and associated insects in unsprayed potatoes in New Zealand. New Zealand. Plant Protection 64: 269–275.Google Scholar
  19. Walker, G.P., F.H. MacDonald, P.J. Wright, A.J. Puketapu, R. Gardener-Gee, P.J. Connolly, and J.A.D. Anderson. 2015. Development of action thresholds for Management of Bactericera cockerelli and Zebra Chip disease in potatoes at Pukekohe, New Zealand. American Journal of Potato Research 92: 266–275.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • John A. D. Anderson
    • 1
  • Peter J. Wright
    • 1
  • Peter Jaksons
    • 2
  • Aleise J. Puketapu
    • 3
  • Graham P. Walker
    • 4
  1. 1.The New Zealand Institute for Plant & Food Research LimitedPukekoheNew Zealand
  2. 2.The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
  3. 3.The New Zealand Institute for Plant & Food Research LimitedTe PukeNew Zealand
  4. 4.The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand

Personalised recommendations