American Journal of Potato Research

, Volume 95, Issue 5, pp 495–503 | Cite as

A Comparison of Resistance to Imidacloprid in Colorado Potato Beetle (Leptinotarsa decemlineata Say) Populations Collected in the Northwest and Midwest U.S.

  • Michael S. CrossleyEmail author
  • Silvia I. Rondon
  • Sean D. Schoville


The Colorado potato beetle, Leptinotarsa decemlineata Say, is a serious pest of potato, Solanum tuberosum L., worldwide. Leptinotarsa decemlineata has a history of repeated adaptation to insecticides, and exhibits a geographic pattern of decreasing insecticide resistance from east to west in the USA. Imidacloprid is one of the most widely used insecticide in western states. In this study, we measured imidacloprid resistance among larval and adult L. decemlineata from ten locations in the Columbia Basin (southeastern Washington and northeastern Oregon) using topical LD50 bioassays, and compared them to estimates from ten locations in Minnesota and Wisconsin. Larval and adult imidacloprid LD50’s and mean percent mortality were generally lowest in Washington and Oregon, but some sites exhibited reductions in mortality comparable to those observed at some Wisconsin sites. Adult LD50’s suggest L. decemlineata in the Columbia Basin may be evolving in response to selection by neonicotinoid insecticides, but larval data suggest high susceptibility to imidacloprid remains in most populations. Future work should expand resistance monitoring efforts to include more regions in the West and other insecticide modes of action.


Control Insecticide resistance LD50 Neonicotinoid Management Potato 


El escarabajo de la papa de Colorado, Leptinotarsa decemlineata Say, es una plaga seria de la papa, Solanum tuberosum L. en el mundo. Leptinotarsa decemlineata tiene una historia de adaptación repetida a los insecticidas, y exhibe un patrón geográfico de disminución de resistencia a insecticidas del este al oeste de los Estados Unidos. Imidacloprid es uno de los insecticidas más ampliamente usados en los estados del oeste. En este estudio, medimos la susceptibilidad a imidacloprid entre larvas y adultos de L. decemlineata de diez localidades en la rivera del Columbia (sureste de Washington y noreste de Oregon), usando bioensayos tópicos LD 50, y los comparamos con estimaciones de diez localidades en Minnesota y Wisconsin. Las LD50’s de imidacloprid en larvas y adultos y el porcentaje promedio de mortalidad fueron generalmente más bajos en la rivera del Columbia, pero algunos sitios exhibieron reducciones en mortalidad comparable a aquellos observados en algunos sitios de Wisconsin. Las LD50’s de adultos sugieren que L. decemlineata en la rivera del Columbia pudiera estar evolucionando en respuesta a selección por insecticidas a base de neonicotinoides, pero los datos de las larvas sugieren alta susceptibilidad a los residuos de imidacloprid en la mayoría de las poblaciones. Trabajos futuros deberían expandir los esfuerzos de monitoreo de la resistencia para incluir más regiones en el oeste y otros modos de acción de insecticidas.



We thank the editor and ### anonymous reviewers for providing helpful critique of this manuscript. We thank growers in Minnesota, Oregon, Washington, and Wisconsin for cooperation with this study; and Ira Thompson and Sudeep Bag from the Irrigated Agricultural Entomology Rondon Program at Oregon State University Hermiston Agricultural Research and Extension Center for assistance sampling in the Columbia Basin. Funding for this project was provided by the University of Wisconsin-Madison Graduate School, Wisconsin Potato and Vegetable Growers Association, and USDA Hatch Act Formula Fund (#WIS01813).


  1. Abbott, W.S. 1987. A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association 3: 302–303.PubMedGoogle Scholar
  2. Alyokhin, A., G. Dively, M. Patterson, M. Mahoney, D. Rogers, and J. Wollam. 2006. Susceptibility of imidacloprid-resistant Colorado potato beetles to non-neonicotinoid inse cticides in the laboratory and field trials. American Journal of Potato Research 83: 485–494.CrossRefGoogle Scholar
  3. Alyokhin, A., G. Dively, M. Patterson, C. Castaldo, D. Rogers, M. Mahoney, and J. Wollam. 2007. Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Management Science 63: 32–41. Scholar
  4. Alyokhin, A., D. Mota-Sanchez, M. Baker, W.E. Snyder, S. Menasha, M. Whalon, G. Dively, and W.F. Moarsi. 2015. The red queen in a potato field: Integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Management Science 71: 343–356. Scholar
  5. Baker, M.B., A. Alyokhin, A.H. Porter, D.N. Ferro, S.R. Dastur, and N. Galal. 2007. Persistence and inheritance of costs of resistance to imidacloprid in Colorado potato beetle. Journal of Economic Entomology 100: 1871–1879.[1871:PAIOCO]2.0.CO;2.Google Scholar
  6. Boiteau, G., and A. Alford. 1983. Synchronization of Colorado potato beetle (Coleoptera: Chrysomelidae) emergence by temporary storage of eggs at low temperature. Canadian Entomologist 115: 1233–1234.CrossRefGoogle Scholar
  7. Contreras, J., P.J. Espinosa, V. Quinto, J. Abellán, C. Grávalos, E. Fernández, and P. Bielza. 2010. Life-stage variation in insecticide resistance of the western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 103: 2164–2168.CrossRefPubMedGoogle Scholar
  8. Core Team, R. 2017. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing Scholar
  9. Echegaray, E., and S.I. Rondon. 2017. Incidence of Bactericera cockerelli (Hemiptera: Triozidae) under different pesticide regimes in the lower Columbia Basin. Journal of Economic Entomology 110: 1639–1647.CrossRefPubMedGoogle Scholar
  10. Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative genetics. Essex: Longman Group Ltd..Google Scholar
  11. Ffrench-Constant, R.H., and R.T. Roush. 1990. Resistance detection and documentation: The relative roles of pesticidal and biochemical assays. In Pesticide Resistance in Arthropods, ed. R.T. Roush and B.E. Tabashnik. Boston: Springer.Google Scholar
  12. Grapputo, A., S. Boman, L. Lindström, A. Lyytinen, and J. Mappes. 2005. The voyage of an invasive species across continents : Genetic diversity of north American and European Colorado potato beetle populations. Molecular Ecology 14: 4207–4219. Scholar
  13. Hansen, T.F., and D. Houle. 2008. Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology 21: 1201–1219. Scholar
  14. Harris, C.R. 1972. Factors influencing the effectiveness of soil insecticides. Annual Reviews of Entomology 17: 177–198.CrossRefGoogle Scholar
  15. Hoy, C., G. Boiteau, A. Alyokhin, G. Dively, and J.M. Alvarez. 2008. Managing insect and mite pests. In Potato Health Management, ed. D.A. Johnson, 2nd ed. St. Paul: American Phytopathology Society Press.Google Scholar
  16. Hsiao, T.H. 1985. Ecophysiological and genetic aspects of geographic variations of the Colorado potato beetle. In Proceedings of the symposium on the Colorado potato beetle, XVIIth International Congress of Entomology ed. D. N. Ferro and R. H. Voss. Research Bulletin 70.Google Scholar
  17. Huseth, A.S., and R.L. Groves. 2013. Effect of insecticide management history on emergence phenology and neonicotinoid resistance in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Journal of Economic Entomology 106: 2491–2505. Scholar
  18. Huseth, A.S., J. Lindholm, C.L. Groves, and R.L. Groves. 2014a. Variable concentration of soil-applied insecticides in potato over time: Implications for management of Leptinotarsa decemlineata. Pest Management Science 70: 1863–1871. Scholar
  19. Huseth, A.S., R.L. Groves, S.A. Chapman, A. Alyokhin, T.P. Kuhar, I.V. Macrae, Z. Szendrei, and B.A. Nault. 2014b. Managing Colorado potato beetle insecticide resistance: New tools and strategies for the next decade of pest control in potato. Journal of Integrated Pest Management 5: 1–8. Scholar
  20. Huseth, A.S., J.D. Petersen, K. Poveda, Z. Szendrei, B.A. Nault, G.G. Kennedy, and R.L. Groves. 2015. Spatial and temporal potato intensification drives insecticide resistance in the specialist herbivore, Leptinotarsa decemlineata. PLoS One 10: e0127576. Scholar
  21. IRAC. 2016. Insecticide resistance action committee database. Accessed 7 July 2017.
  22. Jiang, W.H., W.P. Lu, W.C. Guo, Z.H. Xia, W.J. Fu, and G.Q. Li. 2012. Chlorantraniliprole susceptibility in Leptinotarsa decemlineata in the North Xinjiang Uygur autonomous region in China. Journal of Economic Entomology 105: 549–554. Scholar
  23. Liu, N., Y. Li, and R. Zhang. 2012. Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: Dispersal, occurrence, and economic impact. Entomologia Experimentalis et Applicata 143: 207–217. Scholar
  24. Longley, M., and P. Jepson. 1997. Effects of life stage, substrate, and crop position on the exposure and susceptibility of Aphidius rhopalosiphi DeStefani-perez (Hymenoptera: Braconidae) to deltamethrin. Environmental Toxicology and Chemistry 16: 1034–1041. Scholar
  25. Mendiburu, F. 2017. Agricolae: Statistical procedures for agricultural research. R package version 1.2–7.
  26. Mota-Sanchez, D., R.M. Hollingworth, E.J. Grafius, and D.D. Moyer. 2006. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (say) (Coleoptera: Chrysomelidae). Pest Management Science 62: 30–37. Scholar
  27. Nauen, R., and I. Denholm. 2005. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Archives of Insect Biochemistry and Physiology 58: 200–215. Scholar
  28. Nauen, R., P. Bielza, I. Denholm, and K. Gorman. 2008. Age-specific expression of resistance to a neonicotinoid insecticide in the whitefly Bemisia tabaci. Pest Management Science 64: 1106–1110. Scholar
  29. Olson, E.R., G.P. Dively, and J.O. Nelson. 2000. Baseline susceptibility to imidacloprid and cross resistance patterns in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. Journal of Economic Entomology 93: 447–458. Scholar
  30. Rodriguez-Saona, C., A.C. Wanumen, J. Salamanca, R. Holdcraft, and V. Kyryczenko-Roth. 2016. Toxicity of insecticides on various life stages of two tortricid pests of cranberries and on a non-target predator. Insects 7.
  31. Rondon, S.I. 2012. Pest management strategies for potato insect pests in the Pacific northwest of the United States. In Insecticides - Pest Engineering. InTech., ed. F. Perveen.Google Scholar
  32. Sanil, D., V. Shetty, and N.J. Shetty. 2014. Differential expression of glutathione s-transferase enzyme in different life stages of various insecticide-resistant strains of Anopheles stephensi: A malaria vector. Journal of Vector Borne Diseases 51: 97–105.PubMedGoogle Scholar
  33. Scott, I.M., J.H. Tolman, and D.C. Macarthur. 2014. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae) populations in Canada 2008-2011. Pest Management Science 71: 712–721. Scholar
  34. Stanković, S., M. Kostić, I. Sivčev, S. Janković, P. Kljajić, G. Todorović, and J. Radosav. 2012. Resistance of Colorado potato beetle (Coleoptera: Chrysomelidae) to neonicotinoids, pyrethroids and nereistoxins in Serbia. Romanian Biotechnological Letters 17: 7599–7609.Google Scholar
  35. Szendrei, Z., E. Grafius, A. Byrne, and A. Ziegler. 2012. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Management Science 68: 941–946. Scholar
  36. USDA-NASS. 2014. Agricultural Statistics. Accessed 7 July 2017.
  37. USDA-NASS Agricultural Chemical Use Program. 2016 Corn and Potatoes Chemical Use. Accessed 7 July 2017.
  38. Vazquez-Prokopec, G.M., A. Medina-Barreiro, A. Che-Mendoza, F. Dzul-Manzanilla, F. Correa-Morales, G. Guillermo-May, W. Bibiano-Marín, V. Uc-Puc, E. Geded-Moreno, J. Vadillo-Sánchez, J. Palacio-Vargas, S.A. Ritchie, A. Lenhart, and P. Manrique-Saide. 2017. Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Neglected Tropical Diseases 11: e0005656. Scholar
  39. Whalon, M.E., and D. Mota-Sanchez. 2017. Arthropod pesticide resistance database. East Lansing: Michigan State University.Google Scholar
  40. Zhao, J.Z., B.A. Bishop, and E.J. Grafius. 2000. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 93: 1508–1514. Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Michael S. Crossley
    • 1
    Email author
  • Silvia I. Rondon
    • 2
  • Sean D. Schoville
    • 1
  1. 1.Department of EntomologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Crop & Soil Sciences, Hermiston Agricultural Research and Extension CenterOregon State UniversityHermistonUSA

Personalised recommendations