Skip to main content

An In Vitro Assay Method for Resistance to Bacterial Wilt (Ralstonia solanacearum) in Potato

Abstract

To develop an in vitro assay method for bacterial wilt resistance in potato, resistant and susceptible standard genotypes were grown in vitro, and different conditions of inoculation with Ralstonia solanacearum phylotype I/biovar 4 were examined. The optimal condition was the inoculation of 6–8 leaf stage plants with a bacterial concentration of 102 CFU ml−1 and an incubation temperature of 28 °C. Evaluation of stem wilting was more reliable than that of leaf wilting. Using this method, nine genotypes with different resistance levels in the field were evaluated. Lower disease indices were obtained for genotypes with high resistance levels in the field, suggesting that this assay is useful for evaluating bacterial wilt resistance in a controlled environment.

Resumen

A fin de desarrollar un método de un ensayo in vitro para resistencia de la papa al marchitamiento bacterial, se cultivaron in vitro genotipos estándar resistentes y susceptibles, y se examinaron diferentes condiciones de inoculación con Ralstonia solanacearum filotipo l/biovar 4. La condición óptima fue la inoculación de plantas en un estado de 6–8 hojas con una concentración bacteriana de 102 CFU ml-1, y una temperatura de incubación de 28 °C. La evaluación de la marchites del tallo fue más confiable que la de la hoja. Utilizando este método se evaluaron nueve genotipos con diferentes niveles de resistencia en el campo. Se obtuvieron índices más bajos de enfermedad para genotipos con altos niveles de resistencia en el campo, lo que sugiere que este ensayo es útil para evaluar la resistencia a la marchites bacteriana en un ambiente controlado.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Adhikari, T.B., and R.C. Basnyat. 1998. Effect of crop rotation and cultivar resistance on bacterial wilt of tomato in Nepal. Canadian Journal of Plant Pathology 20: 283–287.

    Article  Google Scholar 

  • Chaparro, J.M., A.M. Sheflin, D.K. Manter, and J.M. Vivanco. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils 48: 489–499.

    Article  Google Scholar 

  • Elphinstone, J.G. 1994. Inheritance of resistance to bacterial diseases. In Potato Genetics, ed. J.E. Bradshaw and G.R. Mackay, 429–446. Wallingford: CAB international.

    Google Scholar 

  • Fegan, M., and P. Prior. 2005. How complex is the ‟Ralstonia solanacearum species complex”? In Bacterial wilt: The disease and the Ralstonia solanacearum species complex, ed. C. Allen, P. Prior, and A.C. Hayward, 449–461. St. Paul: American Phytopathological Society.

    Google Scholar 

  • Fox, J. 2005. The R commander: A basic statistics graphical user interface to R. Journal of Statistical Software 14: 1–42.

    Google Scholar 

  • Frank, M.P., P. Graebing, and J.S. Chib. 2002. Effect of soil moisture and sample depth on pesticide photolysis. Journal of Agricultural and Food Chemistry 50: 2607–2614.

    CAS  Article  PubMed  Google Scholar 

  • Gonzalez, L.C., L. Sequeira, and P.R. Rowe. 1973. A root inoculation technique to screen potato seedlings for resistance to Pseudomonas solancearum. American Potato Journal 50: 96–104.

    Article  Google Scholar 

  • Guo, J.H., H.Y. Qi, Y.H. Guo, H.L. Ge, L.Y. Gong, L.X. Zhang, and P.H. Sun. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control 29: 66−72.

    Article  Google Scholar 

  • Hayward, A.C. 1964. Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology 27: 265–277.

    Article  Google Scholar 

  • Hayward, A.C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 29: 65–87.

    CAS  Article  PubMed  Google Scholar 

  • Hayward, A.C. 1994. The hosts of Pseudomonas solanacearm. In Bacterial wilt: The disease and its causative agent, Pseudomonas solanacearum, ed. A.C. Hayward, and G.L. Hartman, 9–25. Wallingford: CAB International.

    Google Scholar 

  • Hendrick, C., and L. Sequeira. 1984. Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Applied and Environmental Microbiology 48: 94–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horita, M., Y. Suga, A. Ooshiro, and K. Tsuchiya. 2010. Analysis of genetic and biological characters of Japanese potato strains of Ralstonia solanacearum. Journal of General Plant Pathology 76: 196–207.

    CAS  Article  Google Scholar 

  • Horita, M., and K. Tsuchiya. 2001. Genetic diversity of Japanese strains of Ralstonia Solanacearum. Phytopathology 91: 399–407.

    CAS  Article  PubMed  Google Scholar 

  • Horita, M., K. Tsuchiya, Y. Suga, K. Yano, T. Waki, D. Kurose, and N. Furuya. 2014. Current classification of Ralsotnia solanacearum and genetic diversity of the strains in Japan. Journal of General Plant Pathology 80: 455–465.

    CAS  Article  Google Scholar 

  • Jaworski, C.A., R.E. Webb, R.W. Goth, and S.C. Phatak. 1980. Relative resistance of potato cultivars to bacterial wilt. American Potato Journal 57: 159–165.

    Article  Google Scholar 

  • Ji, P., M.T. Momol, S.M. Olson, and P.M. Pradhanang. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Disease 89: 497–500.

    CAS  Article  Google Scholar 

  • Katayama, K., and S. Kimura. 1984. Prevalence and temperature requirements of biovar II and IV strains of Pseudomonas solanacearum from potatoes. Japanese Journal of Phytopathology 50: 476–482.

    Article  Google Scholar 

  • Katayama, K., and S. Kimura. 1986. Ecology and protection of bacterial wilt of potato: 1. Ecology and strains of P.solanacearum (in Japanese). 1986. The Bulletin of Nagasaki Prefectural Agricultural and Forestry Experiment Stations 14: 1–30.

    Google Scholar 

  • Kelman, A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44: 693–695.

    Google Scholar 

  • Kurihara, H., H. Nishikawa, K. Tabata, and T. Okubo. 1963. Studies on relationship between cultural conditions and growing process in potato crop (in Japanese). The Bulletin of Tohoku National Agricultural Experiment Stations 28: 143–200.

    Google Scholar 

  • Mendoza, H.A. 1988. Progress in resistance breeding in potatoes as a function of efficiency of screening procedures. In Bacterial disease of the potato. Report of planning conference, 39–64. Lima: International Potato Center.

  • Montanelli, C., A. Chiari, T. Chiari, F. Stefanini, and G. Nascari. 1995. Evaluation of resistance to Pseudomonas solanacearum in potato under controlled conditions. Euphytica 81: 35–43.

    Article  Google Scholar 

  • Mori, K., K. Asano, S. Tamiya, T. Nakao, and M. Mori. 2015. Challenges of breeding potato cultivars to grow in various environments and to meet different demands. Breeding Science 65: 3–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori, K., N. Mukojima, T. Nakao, S. Tamiya, Y. Sakamoto, N. Sohbaru, K. Hayashi, H. Watanuki, K. Nara, K. Yamazaki, T. Ishii, and K. Hosaka. 2012. Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and Potato virus Y resistance (Ry chc ) genes. American Journal of Potato Research 89: 63–72.

    Article  Google Scholar 

  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

    CAS  Article  Google Scholar 

  • Nakaho, K., S. Takaya, and Y. Sumida. 1996. Condition that increase latent infection of grafted or non-grafted tomatoes with Pseudomonas solanacearum. Japanese Journal of Phytopathology 62: 234–239.

    Article  Google Scholar 

  • Navarro, S., N. Vela, and G. Navarro. 2007. An overview on the environmental behaviour of pesticide residues in soils. Spanish Journal of Agricultural Research 5: 357–375.

  • Patil, V.U., J. Gopal, and B.P. Singh. 2012. Improvement for bacterial wilt resistance in potato by conventional and biotechnological approaches. Agricultural Research 1: 299–316.

    CAS  Article  Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.

  • Rokunuzzaman, M., A. Hayakawa, S. Yamane, S. Tanaka, and K. Ohnishi. 2016. Effect of soil disinfection with chemical and biological methods on bacterial communities. Egyptian Journal of Basic and Applied Sciences 3: 141–148.

  • Sakamoto, Y., K. Mori, Y. Matsuo, N. Mukojima, W. Watanabe, N. Sobaru, S. Tamiya, T. Nakao, K. Hayashi, H. Watanuki, K. Nara, K. Yamazaki, and M. Chaya. 2017. Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests. Breeding Science 67: 320–326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suga, Y., M. Horita, M. Umekita, N. Furuya, and K. Tsuchiya. 2013. Pathogenic characters of Japanese potato strains of Ralstonia solanacearum. Journal of General Plant Pathology 79: 110–114.

    CAS  Article  Google Scholar 

  • Yabuuchi, E., Y. Kosako, I. Yano, H. Hotta, and Y. Nishiuchi. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1986) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiology and Immunology 39: 897–904.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr. Kazuyoshi Hosaka, Obihiro University of Agriculture and Veterinary Medicine, for useful comments and improving the manuscript.

This study was performed in compliance with the laws of Japan, where the experiments were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ippei Habe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habe, I. An In Vitro Assay Method for Resistance to Bacterial Wilt (Ralstonia solanacearum) in Potato. Am. J. Potato Res. 95, 311–316 (2018). https://doi.org/10.1007/s12230-018-9643-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-018-9643-3

Keywords

  • Phylotype I/biovar 4
  • Growth chamber
  • Controlled environment
  • Cultured plantlet