Advertisement

American Journal of Potato Research

, Volume 95, Issue 3, pp 286–300 | Cite as

Genetic Diversity in Argentine Andean Potatoes by Means of Functional Markers

  • Marcelo Nicolás Monte
  • María Florencia Rey Burusco
  • Martín Federico Carboni
  • Martín Alfredo Castellote
  • Sofía Sucar
  • Natalia Sigrid Norero
  • Silvana Lorena Colman
  • Gabriela Alejandra Massa
  • Mónica Liliana Colavita
  • Sergio Enrique Feingold
Article
  • 145 Downloads

Abstract

Andean Potato is a major crop for farmers in the Andes and represents an important gene pool for potato improvement. We present the population structure and genetic diversity of 88 Andigena accessions collected in Northwestern Argentina based on functional markers (25 SSR) distributed along 12 chromosomes. Polymorphic information content ranged from 0.40 to 0.87. A Bayesian approach, a Principal Coordinate Analysis and a Cluster Analysis revealed the presence of: I) a major group containing most of the Andean accessions and II) a smaller group including the out-group cv. Spunta and the sequenced genotype DM. Several group specific alleles were detected. AMOVA showed that 81% of the variability was within each group. Eleven of the SSRs analyzed are linked or within genes reported to regulate traits of nutritional and industrial interest. Additionally, the allelic variant of a photoperiod dependent tuberization regulator gene, StCDF1.2, was exclusively detected in accessions clustered in group II.

Keywords

Andean potato SSR Population structure Genetic diversity Nutritional & industrial quality CDF 

Resumen

La papa andina es un cultivo importante para los agricultores en los Andes y representa un importante reservorio de genes para el mejoramiento de la papa. Aquí presentamos la estructura poblacional y la diversidad genética de 88 introducciones Andígenas, colectadas en el noroeste de Argentina, en base a marcadores funcionales (25 SSRs) distribuidos a lo largo de los 12 cromosomas. El contenido de la información polimórfica fluctuó entre 0.40 y 0.87. Una aproximación Bayesiana, un análisis de coordenadas principales y un análisis de agrupamientos, revelaron la presencia de: I) Un grupo principal constituido por la mayoría de las introducciones Andinas y II) un grupo más pequeño que también incluía a la variedad Spunta y al genotipo secuenciado DM. Se detectaron algunos alelos específicos de grupo. El análisis AMOVA mostró que el 81 % de la variabilidad estaba dentro de cada grupo. Once de los SSRs analizados están ligados o dentro de genes reportados asociados a caracteres de interés nutricional e industrial. Además, la variante alélica del gen regulador de la tuberización dependiente del fotoperíodo, StDF1.2, se detectó exclusivamente en introducciones del grupo II.

Notes

Acknowledgements

The authors want to thank the potato and forages germplasm bank of EEA-Balcarce-INTA (BAL) for providing most of the germplasm material, CAUQUEVA Cooperative and Berta Andrade from Jujuy National University for providing the remaining accessions for the analyses and Silvina Divito for technical support. We thank Dr. Salomé Prat for the guidance provided to MFRB during a research stay at her laboratory. This work was supported by PNBIO1131024 ¨Desarrollo de sistemas alternativos de generación y utilización de variabilidad genética y su aplicación al mejoramiento de los cultivos¨ [Alternative system developing of generation and utilization of genetic variation, and its application on cultivars breeding] INTA 2013-2019; PNAIyAV 1130043 ¨Estrategias para la Diferenciación de Alimentos y el Desarrollo de Nuevos Productos Alimentarios¨ [Strategies for food differentiation and development of new food products] INTA 2013-2019; PNBIO1131023 ¨Prospección y caracterización funcional de genes de interés biotecnológico’ [Prospection and functional characterization of genes with biotechnological interest] INTA 2013-2019; PNBIO1131042 Genómica aplicada a la caracterización de la diversidad genética [Applied genomics to genetic diversity characterization] INTA 2013-2019; PICT-2010-2037 FONCYT, MINCyT ARGENTINA; PE/09/02 MINCyT-CONCyTEC 2011-2012; AETA 282811 INTA 2009-2012; AERG-231221 INTA 2009-2012. MM and MFC were financed by CONICET doctoral fellowships and MFRB by a CONICET post-doctoral fellowship.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interests.

References

  1. [PGSC] Potato Genome Sequencing Consortium 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195Google Scholar
  2. Almasia, N.I., A.A. Bazzini, H.E. Hopp, and C. Vazquez-Rovere. 2008. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Molecular Plant Pathology 9: 329–338.CrossRefPubMedGoogle Scholar
  3. Ames, M., and D.M. Spooner. 2008. DNA from herbarium specimens settles a controversy about origins of the European potato. American Journal of Botany 95: 252–257.CrossRefPubMedGoogle Scholar
  4. Andersen, J.R., and T. Lübberstedt. 2003. Functional markers in plants. Trends in Plant Science 8: 554–560.CrossRefPubMedGoogle Scholar
  5. Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, M.R. Herrera, L. Hoffmann, J.F. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars Solanum tuberosum L. as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry 55: 366–378.CrossRefPubMedGoogle Scholar
  6. Astley, D., and J.G. Hawkes. 1979. The nature of the Bolivian weed potato species Solanum sucrense Hawkes. Euphytica 28: 685–696.CrossRefGoogle Scholar
  7. Atencio, M. 2011. Diversidad en variedades andinas de papa Solanum tuberosum ssp. Andigena evaluada con microsatélites. [Diversity on Andean Potato varieties Solanum tuberosum ssp. Andigena evaluated with microsatellites] Magister Scientiae Thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina.Google Scholar
  8. Benbouza, H., J.M. Jacquemin, J.P. Baudoin, and G. Mergeai. 2006. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnologie, Agronomie, Société et Environnement 102: 77–81.Google Scholar
  9. Brush, S.B., H.J. Carney, and Z. Huamán. 1980. Dynamics of Andean potato agriculture. Economic Botany 35: 70–88.CrossRefGoogle Scholar
  10. Brush, S.B., J. Taylor, and M.R. Bellon. 1992. Technology adoption and biological diversity in Andean potato agriculture. J Dev Biol 39: 365–387.Google Scholar
  11. Camadro, E.L. 2012. Relevance of the genetic structure of natural populations, and sampling and classification approaches for conservation and use of wild crop relatives: Potato as an example. Botany 90: 1065–1072.CrossRefGoogle Scholar
  12. Campbell, J.A., G.J. Davies, V. Bulone, and B. Henrissat. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. The Biochemical Journal 326: 929–939.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Campos, D., G. Noratto, R. Chirinos, C. Arbizu, W. Roca, and L. Cisneros-Zevallos. 2006. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: Native potato Solanum sp., mashua Tropaeolum tuberosum Ruiz and Pavón, Oca Oxalis tuberosa Molina and ulluco Ullucus tuberosus Caldas. Journal of the Science of Food and Agriculture 86: 1481–1488.CrossRefGoogle Scholar
  14. Carboni M.F., S.L. Colman, H.M. Atencio, and S.E. Feingold. 2013. Ácido clorogénico y marcadores moleculares asociados en variedades de papa andina Solanum tuberosum grupo Andígena. [Clorogenic acid and molecular markers associated on Andean potatoes Solanum tuberosum group Andígena]. VIII Encuentro Latinoamericano y del caribe de Biotecnología. Redbio 2013. November 18th to 22nd , 2013. Mar del Plata, Argentina.Google Scholar
  15. Choudhary, S., N.K. Sethy, B. Shokeen, and S. Bhatia. 2008. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theoretical and Applied Genetics 118: 591–608.CrossRefPubMedGoogle Scholar
  16. Clausen, A.M. 1989. Collecting indigenous potato varieties in Northwest Argentina. Plant Genet Resour Newsl 80: 38–39.Google Scholar
  17. Clausen, A.M., M. Colavita, I. Butzonitch, and A.V. Carranza. 2005. A potato collecting expedition in the province of Jujuy, Argentina and disease indexing of virus and fungus pathogens in Andean cultivars. Genetic Resources and Crop Evolution 52: 1099–1109.CrossRefGoogle Scholar
  18. Colman, S. 2014. Contribución alélica de genes candidatos al endulzamiento inducido por frío en papa Solanum tuberosum L. [Candidate genes allelic contribution to cold sweetening induce on Potato Solanum tuberosum L]. Doctoral Thesis. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina.Google Scholar
  19. Colman, S.L., G.A. Massa, M.F. Carboni, and S.E. Feingold. 2017. Cold sweetening diversity in Andean potato germplasm from Argentina. Journal of the Science of Food and Agriculture.  https://doi.org/10.1002/jsfa.8343.
  20. Das, B., S. Sengupta, S. Parida, B. Roy, M. Ghosh, M. Prasad, and T.K. Ghose. 2013. Genetic diversity and population structure of rice landraces from eastern and north eastern states of India. BMC Genetics 14: 71.  https://doi.org/10.1186/1471-2156-14-71. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dodds, K.S. 1962. Classification of cultivated potatoes. In The potato and its wild relatives, vol 4. Texas research foundation Renner, Texas, ed. D.S. Correll, 517–539.Google Scholar
  22. Don, R., P.T. Cox, B. Wainwright, K. Baker, and J.S. Mattick. 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research 19: 4008–4008.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Draffehn, A.M., S. Meller, L. Li, and C. Gebhardt. 2010. Natural diversity of potato Solanum tuberosum invertases. BMC Plant Biology 10: 271.  https://doi.org/10.1186/1471-2229-10-271.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Earl, D.A., and B.M. Vonholdt. 2011. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.CrossRefGoogle Scholar
  25. Esquinas-Alcázar, J. 2005. Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nature Reviews. Genetics 6: 946–953.CrossRefPubMedGoogle Scholar
  26. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology 14: 2611–2620.CrossRefPubMedGoogle Scholar
  27. FAOSTAT. 2015. FAO production statistics. Food and Agriculture Organization: Crops statistics database www.faostat.fao.org.Google Scholar
  28. Favoretto, P., E.A. Veasey, and P.C.T.D. Melo. 2011. Molecular characterization of potato cultivars using SSR markers. Horticultura Brasileira 29: 542–547.CrossRefGoogle Scholar
  29. Feingold, S., J. Lloyd, N. Norero, M. Bonierbale, and J. Lorenzen. 2005. Mapping and characterization of new EST-derived microsatellites for potato Solanum tuberosum L. Theoretical and Applied Genetics 111: 456–466.CrossRefPubMedGoogle Scholar
  30. Fu, Y.-B., G.W. Peterson, K.W. Richards, R. Tarn, and J.E. Perci. 2008. Genetic diversity of canadian and exotic potato germplasm revealed by simple sequence repeat markers. American Journal of Potato Research 86: 38–48.CrossRefGoogle Scholar
  31. Gavrilenko, T., O. Antonova, A. Shuvalova, E. Krylova, N. Alpatyeva, D.M. Spooner, and L. Novikova. 2013. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution 60: 1997–2015.CrossRefGoogle Scholar
  32. Ghislain, M., D. Zhang, D. Fajardo, Z. Huamán, and R.J. Hijmans. 1999. Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genetic Resources and Crop Evolution 466: 547–555.CrossRefGoogle Scholar
  33. Ghislain, M., B. Trognitz, M.D.R. Herrera, J. Solis, G. Casallo, C. Vásquez, O. Hurtado, R. Castillo, L. Portal, and M. Orrillo. 2001. Genetic loci associated with field resistance to late blight in offspring of Solanum phureja and S. tuberosum grown under short-day conditions. TAG Theoretical and Applied Genetics 103: 433–442.CrossRefGoogle Scholar
  34. Ghislain, M., J. Núñez, Herrera MDR, J. Pignataro, F. Guzman, M. Bonierbale, and D.M. Spooner. 2008. Robust and highly informative microsatellite-based genetic identity kit for potato. Molecular Breeding 23: 377–388.CrossRefGoogle Scholar
  35. Ghislain, M., J. Núñez, M.D.R. Herrera, and D.M. Spooner. 2009. The single Andigenum origin of neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses. Theoretical and Applied Genetics 118: 963–969.CrossRefPubMedGoogle Scholar
  36. Haan, S.D., M. Bonierbale, M. Ghislain, J. Núñez, and G. Trujillo. 2007. Indigenous biosystematics of Andean potatoes: Folk taxonomy, descriptors and nomenclature. Acta Horticulturae: 89–134.  https://doi.org/10.17660/actahortic.2007.745.4.
  37. Hawkes, J.G. 1947. On the origin and meaning of south American Indian potato names. Journal of the Linnean Society: Botany 5350: 205–250.Google Scholar
  38. Hawkes, J.G., and J.P. Hjerting. 1969. The potatoes of Argentina, Brazil, Paraguay, and Uruguay: a biosystematic study, 525. Oxford: Clarendon Press.Google Scholar
  39. Haymes, K.M. 1996. Mini-prep method suitable for plant breeding program. Plant Molecular Biology Reporter 14: 280–284.CrossRefGoogle Scholar
  40. Hirsch, C.N., C.D. Hirsch, K. Felcher, J. Coombs, D. Zarka, A. Van Deynze, W. De Jong, R. E. Veilleux, S. Jansky, P. Bethke, D.S. Douches, and C.R. Buell. 2013. Retrospective view of north American potato Solanum tuberosum L. breeding in the 20th and 21st centuries. G3 Bethesda 3:1003–1013.Google Scholar
  41. Hoque, M., H. Huq, and N. Moon. 2014. Molecular diversity analysis in potato Solanum tuberosum L. through RAPD markers. SAARC Journal of Agriculture.  https://doi.org/10.3329/sja.v11i2.18405.
  42. Huarte, M.A., A.M. Clausen, E.L. Camadro, M.C. Cortés, R.W. Masuelli, M. Capezio, MdlM Echeverría, J. Mantecón, and E. Vega. 1991. Utilización de mayor variabilidad genética en el programa argentino de mejoramiento de papa, 191–210. In: Actas del II simposio latinoamericano sobre recursos genéticos de especies hortícolas. Mar del Plata, Argentina.Google Scholar
  43. Ihaka, R., and R. Gentleman. 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5: 299.Google Scholar
  44. Ispizúa, V.N., I.R. Guma, S. Feingold, and A.M. Clausen. 2007. Genetic diversity of potato landraces from northwestern Argentina assessed with simple sequence repeats SSRs. Genetic Resources and Crop Evolution 54: 1833–1848.CrossRefGoogle Scholar
  45. Jakobsson, M., and N.A. Rosenberg. 2007. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806.CrossRefPubMedGoogle Scholar
  46. Johns, T., and S.L. Keen. 1986. On-going evolution of the potato on the altiplano of western Bolivia. Economic Botany 40: 409–424.CrossRefGoogle Scholar
  47. Juyó, D., F. Sarmiento, M. Álvarez, and T. Mosquera. 2015. Genetic diversity and population structure in diploid potatoes of group Phureja. Crop Science 55: 760.  https://doi.org/10.2135/cropsci2014.07.0524.CrossRefGoogle Scholar
  48. Kandemir, N., G. Yılmaz, Y.B. Karan, and D. Borazan. 2010. Development of a simple sequence repeat SSR marker set to fingerprint local and modern potato varieties grown in central Anatolian plateau in Turkey. African Journal of Biotechnology 9(34): 5516–5522.Google Scholar
  49. Kloosterman, B., J.A. Abelenda, M.D.M.C. Gómez, M. Oortwijn, J.M. Boer, K. Kowitwanich, B.M. Horvath, H.J. van Eck, C. Smaczniak, S. Prat, R.G.F. Visser, et al. 2013. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495: 246–250.CrossRefPubMedGoogle Scholar
  50. Krits, P., E. Fogelman, and I. Ginzberg. 2007. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227: 143–150.CrossRefPubMedGoogle Scholar
  51. Li, L., M.J. Paulo, J. Strahwald, J. Lübeck, H.R. Hofferbert, E. Tacke, H. Junghans, J. Wunder, A. Draffehn, F. van Eeuwijk, and C. Gebhardt. 2008. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics 116: 1167–1181.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Luque Cabrera, J., and Sánchez A. Herráez. 2001. Texto ilustrado de biología molecular e ingeniería genética. Madrid: Harcourt.Google Scholar
  53. Marconi, T.G., E.A. Costa, H.R. Miranda, M.C. Mancini, C.B. Cardoso-Silva, K.M. Oliveira, L.R. Pinto, M. Mollinari, A.A. Garcia, and A.P. Souza. 2011. Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Research Notes 4: 264.  https://doi.org/10.1186/1756-0500-4-264.CrossRefPubMedPubMedCentralGoogle Scholar
  54. McGregor, C.E., C.A. Lambert, M.M. Greyling, J.H. Louw, and L. Warnich. 2000. A comparative assessment of DNA fingerprinting techniques RAPD, ISSR. AFLP and SSR in tetraploid potato Solanum tuberosum L. germplasm. Euphytica 1132: 135–131.Google Scholar
  55. Meksem, K., D. Leister, J. Peleman, M. Zabeau, F. Salamini, and C. Gebhardt. 1995. A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Molecular & General Genetics 249: 74–81.CrossRefGoogle Scholar
  56. Milbourne, D., R.C. Meyer, A.J. Collins, L.D. Ramsay, C. Gebhardt, and R. Waugh. 1998. Isolation, characterisation and mapping of simple sequence repeat loci in potato. Molecular & General Genetics 2593: 233–245.CrossRefGoogle Scholar
  57. Milbourne, D., B. Pande, and G.J. Bryan. 2007. Potato. In: Cole C ed pulses, sugar and tuber crops Vol. 3. Berlin: Springer science and business media, pp 205–236.  https://doi.org/10.1007/978-3-540-34516-9_12.
  58. Morris, W.L., R.D. Hancock, L.J.M. Ducreux, J.A. Morris, M. Usman, S.R. Verrall, S.K. Sharma, G. Bryan, J.W. McNicol, P.E. Hedley, and M.A. Taylor. 2013. Day length dependent restructuring of the leaf transcriptome and metabolome in potato genotypes with contrasting tuberization phenotypes. Plant, Cell & Environment 37: 1351–1363.CrossRefGoogle Scholar
  59. Nei, M. 1972. Genetic distance between populations. The American Naturalist 106: 283–292.CrossRefGoogle Scholar
  60. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70: 3321–3323.CrossRefGoogle Scholar
  61. Norero, N., J. Malleville, M. Huarte, and S.E. Feingold. 2004. Cost efficient potato Solanum tuberosum L. cultivar identification by microsatellite amplification. Potato Research 45: 131–138.CrossRefGoogle Scholar
  62. Ochoa, C.M. 1990. The potatoes of South America: Bolivia, 551. Cambridge: Cambridge University Press.Google Scholar
  63. Okada, K.A. 1976. Exploration, conservation and evaluation of potato germplasm in Argentina. Potato Research 19: 263–269.CrossRefGoogle Scholar
  64. Okada, KA. 1979. Collection and taxonomy of argentine wild species tuber-bearing Solanums. Report of the planning conference on the exploration, taxonomy and maintenance of potato germplasm III. CIP, lima, Perú, 15–19 October, pp 98–113.Google Scholar
  65. Okada, K.A., and A.M. Clausen. 1984. Collecting potatoes in northwest Argentina, 1983. Am Potato J 61: 301–305.CrossRefGoogle Scholar
  66. Oliveira, K.M., L.R. Pinto, T.G. Marconi, M. Mollinari, E.C. Ulian, S.M. Chabregas, and A.P. Souza. 2009. Characterization of new polymorphic functional markers for sugarcane. Genome 522: 191–209.CrossRefGoogle Scholar
  67. Onamu, R., J. Legaria, Guez JLRI, J. Sahagùn, and J. Pèrez. 2016. Molecular characterization of potato Solanum tuberosum L. genotypes using random amplified polymorphic DNA RAPD and inter simple sequence repeat ISSR markers. African Journal of Biotechnology 15: 1015–1025.CrossRefGoogle Scholar
  68. Öztürk, E., Z. Kavurmacı, K. Kara, and T. Polat. 2010. The effects of different nitrogen and phosphorus rates on some quality traits of potato. Potato Research 53: 309–312.CrossRefGoogle Scholar
  69. Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.CrossRefPubMedGoogle Scholar
  70. Peakall, R., and P.E. Smouse. 2006. Genalex 6: Genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.CrossRefGoogle Scholar
  71. Pritchard, J.K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
  72. Quiros, C.F., S.B. Brush, D.S. Douches, K.S. Zimmerer, and G. Huestis. 1990. Biochemical and folk assessment of variability of Andean cultivated potatoes. Economic Botany 442: 254–266.CrossRefGoogle Scholar
  73. Raimondi JP, Peralta IE, Masuelli RW, Feingold SE, Camadro EL. 2005. Examination of the hybrid origin of the wild potato Solanum ruiz-lealii Brücher. Pl Syst Evol 253:33–51.Google Scholar
  74. Ross, H. 1986. Potato breeding-problems and perspectives. Journal Plant Breeding Suppl. 3: 132.Google Scholar
  75. Ruíz de Galarreta, J.I., L. Barandalla, D.J. Rios, R. Lopez, and E. Ritter. 2010. Genetic relationships among local potato cultivars from Spain using SSR markers. Genetic Resources and Crop Evolution 58: 383–395.CrossRefGoogle Scholar
  76. Schönhals, E.M., F. Ortega, L. Barandalla, A. Aragones, J.I. Ruiz de Galarreta, J.C. Liao, R. Sanetomo, B. Walkemeier, E. Tacke, E. Ritter, and C. Gebhardt. 2016. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato Solanum tuberosum L. Theoretical and Applied Genetics 129: 767–785.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sharma SK, Bolser D, de Boer J, Sønderkær M, Amoros W, Carboni MF, D'Ambrosio JM, de la Cruz G, Di Genova A, Douches DS, Esquiluz M. 2013. Construction of reference chromosome-scale pseudomolecules for potato: Integrating the potato genome with genetic and physical maps. G3 Bethesda 3: 2031-2047.Google Scholar
  78. Siddappa, S., J.K. Tiwari, R. Sindhu, S. Sharma, V. Bhardwaj, S.K. Chakrabarti, and B.P. Singh. 2014. Phytophthora infestans associated global gene expression profile in a late blight resistant Indian potato cv. Kufri Girdhari. Aust J Crop Sci 82: 215.Google Scholar
  79. Slater AT, Cogan NO, Forster JW, Hayes BJ, Daetwyler HD. 2016. Improving genetic gain with genomic selection in autotetraploid potato. The Plant Genome. doi:  https://doi.org/10.3835/plantgenome2016.02.0021.
  80. Sonnante, G., R. D'amore, E. Blanco, C.L. Pierri, M. De Palma, J. Luo, M. Tucci, and C. Martin. 2010. Novel hydroxycinnamoyl-coenzyme a quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiology 153: 1224–1238.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sørensen K, Kirk H, Olsson K, Labouriau R, Christiansen J. 2008. A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum × Solanum sparsipilum located on chromosome I. Theor App Genet 1171:1–9.Google Scholar
  82. Spooner, D.M., and R.G. van den Berg. 1992. Species limits and hypotheses of hybridization of Solanum berthaultii Hawkes and S. tarijense Hawkes: Morphological data. Taxon: 685–700.Google Scholar
  83. Spooner DM, Núñez J, Rodríguez F, P. Naik S, Ghislain M. 2005. Nuclear and chloroplast DNA reassessment of the origin of Indian potato varieties and its implications for the origin of the early European potato. Theoretical and Applied Genetics 110:1020–1026.Google Scholar
  84. Spooner, D.M., M. Ghislain, R. Simon, S.H. Jansky, and T. Gavrilenko. 2014. Systematics, diversity, genetics and evolution of wild and cultivated potatoes. The Botanical Review 80: 283–383.CrossRefGoogle Scholar
  85. Sukhotu, T., O. Kamijima, and K. Hosaka. 2005. Genetic diversity of the Andean tetraploid cultivated potato Solanum tuberosum L. subsp. andigena Hawkes evaluated by chloroplast and nuclear DNA markers. Genome 48: 55–64.CrossRefPubMedGoogle Scholar
  86. Szydlowski, N., P. Ragel, S. Raynaud, M.M. Lucas, I. Roldán, M. Montero, F.J. Muñoz, M. Ovecka, A. Bahaji, V. Planchot, J. Pozueta-Romero, et al. 2009. Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. The Plant Cell Online 21: 2443–2457.  https://doi.org/10.1105/tpc.109.066522.CrossRefGoogle Scholar
  87. Thiel, T., W. Michalek, R. Varshney, and A. Graner. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley Hordeum Vulgare L. Theoretical and Applied Genetics 106: 411–422.CrossRefPubMedGoogle Scholar
  88. Ugent, D. 1970. The potato. Science 170: 1161–1166.CrossRefPubMedGoogle Scholar
  89. Valkonen, J.P.T., M. Keskitalo, T. Vasara, and L. Pietila. 1996. Potato glycoalkaloids: A burden or a blessing? CRC Crit Rev Plant Sci 15: 1–20.CrossRefGoogle Scholar
  90. Yıldırım, A., N. Kandemir, Ö.A. Sönmezoğlu, and T.E. Güleç. 2009. Transferability of microsatellite markers among cool season cereals. Biotechnology and Biotechnological Equipment 23: 1299–1302.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  • Marcelo Nicolás Monte
    • 1
    • 2
  • María Florencia Rey Burusco
    • 1
    • 2
  • Martín Federico Carboni
    • 1
    • 2
  • Martín Alfredo Castellote
    • 1
  • Sofía Sucar
    • 1
  • Natalia Sigrid Norero
    • 1
  • Silvana Lorena Colman
    • 1
    • 2
  • Gabriela Alejandra Massa
    • 1
    • 2
    • 3
  • Mónica Liliana Colavita
    • 1
    • 3
  • Sergio Enrique Feingold
    • 1
  1. 1.Laboratorio de AgrobiotecnologíaInstituto Nacional de Tecnología Agropecuaria (INTA), EEA, Balcarce CC 276 (7620)BalcarceArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina
  3. 3.Facultad de Ciencias AgrariasUniversidad Nacional de Mar del PlataBalcarceArgentina

Personalised recommendations