American Journal of Potato Research

, Volume 95, Issue 2, pp 178–182 | Cite as

Germplasm Release: Three Tetraploid Potato Clones with Resistance to Common Scab

  • Shelley Jansky
  • David Douches
  • Kathleen Haynes


Common scab caused by the soil-borne bacterium Streptomyces scabies is a serious disease for the potato industry. We have identified a strong source of resistance in the diploid wild relative Solanum chacoense. This resistance has been introgressed into tetraploid cultivated potato via unilateral sexual polyploidization. This paper describes three hybrid clones (M8, M16, M17) for use by potato breeding programs to enhance resistance to common scab. They were created by crossing a diploid clone (50% S. tuberosum, 50% S. chacoense) to tetraploid cultivars, producing hybrids with 75% cultivated and 25% wild germplasm. The clones are male and female fertile, and are adapted to temperate zone production environments.


Solanum tuberosum Solanum chacoense Wild germplasm Streptomyces scabies Disease resistance Unilateral sexual polyploidization 


La roña común, causada por la bacteria del suelo Streptomyces scabies, es una enfermedad seria para la industria de la papa. Nosotros hemos identificado una fuente fuerte de resistencia en su pariente silvestre diploide Solanum chacoense. Esta resistencia ha sido introducida en la papa cultivada tetraploide por vía de poliploidización sexual unilateral. Este artículo describe tres clones híbridos (M8, M16, M17) para uso por programas de mejoramiento de papa para aumentar la resistencia a la roña común. Fueron creados mediante las cruzas de un clon diploide (50% S. tuberosum, 50% S. chacoense) para variedades tetraploides, produciendo híbridos con 75% de germoplasma de cultivo y 25% de silvestre. Los clones son fértiles como masculino y femenino y se adaptan a ambientes de zonas templadas de producción.


  1. Braun, S. 2013. Quantitative trait loci analysis and breeding for resistance to common scab in potato. Ph.D thesis. University of Wisconsin-Madison.Google Scholar
  2. Braun, S.R., J.B. Endelman, K.G. Haynes, and S.H. Jansky. 2017a. Quantitative trait loci for resistance to common scab and cold-induced sweetening in diploid potato. Plant Genome.
  3. Braun, S.R., A. Gevens, A. Charkowski, C. Allen, and S. Jansky. 2017b. Potato common scab: A review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. American Journal of Potato Research.
  4. Carputo, D., and A. Barone. 2005. Ploidy level manipulations in potato through sexual hybridisation. Annals of Applied Biology 146: 71–79.CrossRefGoogle Scholar
  5. De Jong, H. 1977. Self-compatibility in inbred cultivated diploid potatoes. Incompatibility Newsletter 8: 16–17.Google Scholar
  6. Dees, M.M.W., and L.L.A. Wanner. 2012. In search of better management of potato common scab. Potato Research 55: 249–268.CrossRefGoogle Scholar
  7. Defernez, M., Y.M. Gunning, A.J. Parr, L.V.T. Shepherd, H.V. Davies, and I.J. Colquhoun. 2004. NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. Journal of Agriculture and Food Chemistry 52: 6075–6085.CrossRefGoogle Scholar
  8. Douches, D., J. Coombs, R. Hammerschmidt, W. Kirk, and C. Long. 2009. Kalkaska: A round white chip-processing potato variety with common scab resistance. American Journal of Potato Research 86: 347–355.CrossRefGoogle Scholar
  9. Driscoll, J., J. Coombs, R. Hammerschmidt, W. Kirk, L. Wanner, and D. Douches. 2009. Greenhouse and field nursery evaluation for potato common scab tolerance in a tetraploid population. American Journal of Potato Research 86: 96–101.CrossRefGoogle Scholar
  10. Hamernik, A.J., R.E.J. Hanneman, and S.H. Jansky. 2009. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Science 49: 529–542.Google Scholar
  11. Hamilton, J.P., C.N. Hansey, B.R. Whitty, K. Stoffel, A.N. Massa, A. Van Deynze, W.S. De Jong, D.S. Douches, and C.R. Buell. 2011. Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC genomics 12: 302.Google Scholar
  12. Hermundstad, S.A., and S.J. Peloquin. 1985. Germplasm enhancement with potato haploids. The Journal of Heredity 76: 463–467.CrossRefGoogle Scholar
  13. Hirsch, C.N., C.D. Hirsch, K. Felcher, J. Coombs, D. Zarka, A. Van Deynze, W. De Jong, R. Veilleux, S. Jansky, P. Bethke, D. Douches, and C.R. Buell. 2013. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. Genes Genomes and Genetics 3: 1003–1013.Google Scholar
  14. Jansky, S.H. 2000. Breeding for disease resistance in potato. Plant Breeding Reviews 19: 69–155.Google Scholar
  15. Jones D. 2010. Protocol for extraction of glycoalkaloids in potato. Michigan State University. Research Technology Support Facility.(unpublished).Google Scholar
  16. Plaisted, R.L., D.E. Halseth, B.B. Brodie, S.A. Slack, J.B. Sieczka, B.J. Christ, K.M. Paddock, and M.W. Peck. 1998. Pike: A full season scab and golden nematode resistant chipstock variety. American Journal of Potato Research 75: 117–120.CrossRefGoogle Scholar
  17. Rieman, G.H. 1962. Superior: A new white, medium-maturing, scab-resistant potato variety with high chipping quality. American Potato Journal 39: 19–28.CrossRefGoogle Scholar
  18. Sanford, L.L., R.S. Kobayahsi, K.L. Deahl, and S.L. Sinden. 1996. Segregation of leptines and other glycoalkaloids in Solanum tuberosum (4x) x S. chacoense (4x) crosses. American Potato Journal 73(1): 21–33.Google Scholar
  19. Sinden, S.L., and R.E. Webb. 1974. Effect of environment on glycoalkaloid content of six potato varieties at 39 locations US Department of Agriculture, Washington DC.Google Scholar

Copyright information

© The Potato Association of America 2018

Authors and Affiliations

  1. 1.USDA-ARS and Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Michigan State UniversityEast LansingUSA
  3. 3.USDA-ARSBeltsvilleUSA

Personalised recommendations