Advertisement

American Journal of Potato Research

, Volume 95, Issue 2, pp 157–163 | Cite as

Rapid Screening of Potato Cultivars Tolerant to Nitrogen Deficiency Using a Hydroponic System

  • Xiaofang Xie
  • Xiu-Qing Li
  • Bernie J. Zebarth
  • Suyan Niu
  • Ruimin Tang
  • Helen H. Tai
  • Benoit Bizimungu
  • Weiren Wu
  • Muhammad Haroon
Article
  • 212 Downloads

Abstract

Increased cultivar tolerance to nitrogen (N) deficiency may increase productivity and reduce environmental impact of potato crops. In this study we screened 20 cultivars for the tolerance to N-deficient (0.05 mM nitrate) in comparison with N-abundant (7.5 mM nitrate) nitrate supply using plantlets grown for 15 days in a recirculating hydroponic system. Nitrogen deficiency increased the root-to-shoot ratio in 18 cultivars. Plant total dry weight (TDW) was reduced by an average of 61% under N-deficient nitrate supply. Tolerance to N deficiency was assessed as the TDW ratio (TDWR), calculated as the ratio of TDW under N-deficient to N-abundant nitrate supply. The cultivars Norland, Raritan, Nipigon and Langlade were significantly more tolerant to nitrogen deficiency (greater TDWR) than Eramosa, Carleton, and Epicure. The results indicate that the hydroponic system has capacity to rapidly screen a large number of cultivars for tolerance to N deficiency.

Keywords

Root:Shoot ratio Plantlets Hoagland’s nutrient solution Nitrogen deficiency 

Abstracto

Aumento en la tolerancia varietal a la deficiencia de nitrógeno (N) pudiera incrementar la productividad y reducir el impacto ambiental en los cultivos de papa. En este estudio, evaluamos 20 variedades para la tolerancia al suministro de la deficiencia de N (0.05 mM de nitrato) en comparación con abundancia de N (7.5 mM de nitrato), usando plántulas cultivadas por 15 días en un sistema recirculativo hidropónico. La deficiencia de N aumentó la proporción raíz-follaje en 18 variedades. El peso seco total de la planta (TDW) se redujo en promedio de 61% bajo un suministro deficiente de N-nitrato. Se analizó la tolerancia a la deficiencia de N como la proporción del TDW (TDWR), calculado como la proporción de TDW bajo deficiencia de N respecto a suministro de N-nitrato abundante. Las variedades Norland, Raritan, Nipigon y Langlade fueron significativamente más tolerantes a la deficiencia de nitrógeno (valor más alto de TDWR), que Eramosa, Carleton, y Epicure. Los resultados indican que el sistema hidropónico tiene la capacidad para evaluar rápidamente un gran número de variedades para tolerancia a la derficiencia de N.

Notes

Acknowledgements

We sincerely thank Kyle MacKinley for assisting in the design and construction of the hydroponic system, Yulia Kupriyanovich for assistance in conducting the experiments, and the greenhouse management team for their technical support. Xiaofang Xie and Ruimin Tang received scholarships from China Scholarship Council and Suyan Niu received financial support from Henan Agricultural University to study at Agriculture and Agri-Food Canada (AAFC). The research was supported by AAFC.

References

  1. Abenavoli, M.R., C. Longo, A. Lupini, A.J. Miller, F. Araniti, F. Mercati, M.P. Princi, and F. Sunseri. 2016. Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiology and Biochemistry 107: 21–32.CrossRefPubMedGoogle Scholar
  2. Anbessa, Y., P. Juskiw, A. Good, J. Nyachiro, and J. Helm. 2009. Genetic variability in nitrogen use efficiency of spring barley. Crop Science 49: 1259–1269.CrossRefGoogle Scholar
  3. Clarkson, D.T. 1985. Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology 36: 77–115.CrossRefGoogle Scholar
  4. Davidson, E.A. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience 2: 659–662.CrossRefGoogle Scholar
  5. Errebhi, M., C.J. Rosen, S.C. Gupta, and D.E. Birong. 1998a. Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal 90: 10–15.CrossRefGoogle Scholar
  6. Errebhi, M., C.J. Rosen, F.I. Lauer, M.W. Martin, and J.B. Bamberg. 1999. Evaluation of tuber-bearing solanum species for nitrogen use efficiency and biomass partitioning. American Journal of Potato Research 76: 143–151.CrossRefGoogle Scholar
  7. Errebhi, M., C.J. Rosen, F.I. Lauer, M.W. Martin, J.B. Bamberg, and D.E. Birong. 1998b. Screening of exotic potato germplasm for nitrogen uptake and biomass production. American Journal of Potato Research 75: 93–100.CrossRefGoogle Scholar
  8. Galloway, J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, and M.A. Sutton. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320: 889–892.CrossRefPubMedGoogle Scholar
  9. Garnett, T., D. Plett, V. Conn, S. Conn, H. Rabie, J.A. Rafalski, K. Dhugga, M.A. Tester, and B.N. Kaiser. 2015. Variation for N uptake system in maize: Genotypic response to N supply. Frontiers in Plant Science 6: 936.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gruber, B.D., R.F.H. Giehl, S. Friedel, and N. von Wirén. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology 163: 161–179.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hammer, P.A., T. Tibbitts, R. Langhans, and J.C. Mcfarlane. 1978. Base-line growth studies of 'Grand Rapids' lettuce in controlled environments. Journal of American Society for Horticultural Science 103: 649–655.Google Scholar
  12. Karrou, M., and M. Nachit. 2015. Durum wheat genotypic variation of yield and nitrogen use efficiency and its components under different water and nitrogen regimes in the Mediterranean region. Journal of Plant Nutrition 38: 2259–2278.CrossRefGoogle Scholar
  13. Kleinkopf, G., D. Westermann, and R. Dwelle. 1981. Dry matter production and nitrogen utilization by six potato cultivars. Agronomy Journal 73: 799–802.CrossRefGoogle Scholar
  14. Krouk, G., B. Lacombe, A. Bielach, F. Perrine-Walker, K. Malinska, E. Mounier, K. Hoyerova, P. Tillard, S. Leon, K. Ljung, E. Zazimalova, E. Benkova, P. Nacry, and A. Gojon. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18: 927–937.CrossRefPubMedGoogle Scholar
  15. Li, X.-Q., D. Sveshnikov, B.J. Zebarth, H. Tai, D. De Koeyer, P. Millard, M. Haroon, and M. Singh. 2010. Detection of nitrogen sufficiency in potato plants using gene expression markers. American Journal of Potato Research 87: 50–59.CrossRefGoogle Scholar
  16. Linkohr, B.I., L.C. Williamson, A.H. Fitter, and H.M.O. Leyser. 2002. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant Journal 29: 751–760.CrossRefPubMedGoogle Scholar
  17. Lynch, J.P. 2007. Turner review no. 14. Roots of the second green revolution. Australian Journal of Botany 55: 493–512.CrossRefGoogle Scholar
  18. Marschner H. 1995. Mineral nutrition of higher plants. 2nd. Edn Academic Pres. Google Scholar
  19. Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany 105: 1141–1157.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Paul, M., and S. Driscoll. 1997. Sugar repression of photosynthesis: The role of carbohydrates in signalling nitrogen deficiency through source: Sink imbalance. Plant, Cell & Environment 20: 110–116.CrossRefGoogle Scholar
  21. Sattelmacher, B., F. Klotz, and H. Marschner. 1990. Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant and Soil 123: 131–137.CrossRefGoogle Scholar
  22. Scheible, W.-R., R. Morcuende, T. Czechowski, C. Fritz, D. Osuna, N. Palacios-Rojas, D. Schindelasch, O. Thimm, M.K. Udvardi, and M. Stitt. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136: 2483–2499.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Scheible, W.R., M. Lauerer, E.D. Schulze, M. Caboche, and M. Stitt. 1997. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. The Plant Journal 11: 671–691.CrossRefGoogle Scholar
  24. Sharifi, M., and B.J. Zebarth. 2006. Nitrate influx kinetic parameters of five potato cultivars during vegetative growth. Plant and Soil 288: 91–99.CrossRefGoogle Scholar
  25. Sharifi, M., B.J. Zebarth, and W. Coleman. 2007. Screening for nitrogen-use efficiency in potato with a recirculating hydroponic system. Communications in Soil Science and Plant Analysis 38: 359–370.CrossRefGoogle Scholar
  26. St. Luce, M., J.K. Whalen, N. Ziadi, and B.J. Zebarth. 2011. Nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils. Advances in Agronomy 112: 55–102.CrossRefGoogle Scholar
  27. Youngquist, J.B., P. Bramel-Cox, and J.W. Maranville. 1992. Evaluation of alternative screening criteria for selecting nitrogen-use efficient genotypes in sorghum. Crop Science 32: 1310–1313.CrossRefGoogle Scholar
  28. Zebarth, B.J., and C.J. Rosen. 2007. Research perspective on nitrogen BMP development for potato. American Journal of Potato Research 84: 3–18.CrossRefGoogle Scholar
  29. Zebarth, B.J., G. Tai, R. Tarn, H. De Jong, and P.H. Milburn. 2004. Nitrogen use efficiency characteristics of commercial potato cultivars. Canadian Journal of Plant Science 84: 589–598.CrossRefGoogle Scholar
  30. Zebarth, B.J., T.R. Tarn, H. De Jong, and A. Murphy. 2008. Nitrogen use efficiency characteristics of Andigena and diploid potato selections. American Journal of Potato Research 85: 210–218.CrossRefGoogle Scholar
  31. Zvomuya, F., C.J. Rosen, and J.C. Miller. 2002. Response of russet Norkotah clonal selections to nitrogen fertilization. American Journal of Potato Research 79: 231–239.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  • Xiaofang Xie
    • 1
    • 2
  • Xiu-Qing Li
    • 2
  • Bernie J. Zebarth
    • 2
  • Suyan Niu
    • 2
    • 3
  • Ruimin Tang
    • 2
    • 4
  • Helen H. Tai
    • 2
  • Benoit Bizimungu
    • 2
  • Weiren Wu
    • 5
  • Muhammad Haroon
    • 2
  1. 1.College of Life SciencesFujian Agriculture & Forestry UniversityFuzhouChina
  2. 2.Fredericton Research and Development Centre, Agriculture and Agri-Food CanadaFrederictonCanada
  3. 3.Institute of PaulowniaHenan Agricultural UniversityZhengzhouChina
  4. 4.Biochemistry and Molecular Biology, College of Life SciencesNanjing Agricultural UniversityNanjingChina
  5. 5.Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Agriculture & Forestry UniversityFuzhouChina

Personalised recommendations