Advertisement

American Journal of Potato Research

, Volume 95, Issue 2, pp 144–156 | Cite as

Characterisation of Nanoestructured Potato Starch Powders with Blackberry (Rubus fruticosus Var. Brazos) Juice

  • H. E. Romero-Luna
  • E. Azuara
  • C. I. Beristain
  • J. J. Chanona-Pérez
  • A. Hernández-Mendoza
  • M. Jiménez
Article
  • 167 Downloads

Abstract

Potato starch has been used in the protection of antioxidants, but its use is limited due to its physicochemical properties. The objective of this work was to evaluate the effect of physical modification of potato starch by gelatinization, spray-freezing on liquid nitrogen and freezing in liquid nitrogen on the physicochemical properties and stability of powders added with blackberry juice. Frozen potato starch with liquid nitrogen exhibited higher colour retention and anthocyanins during processing, as well as adequate physicochemical and flow properties. While the spray-frozen starch on liquid nitrogen had a higher retention of anthocyanins, polyphenols and antioxidant activity during storage under controlled conditions. Atomic force microscopy revealed the modification in the microstructure of the developed powders. These results demonstrated that the microstructure of the powders was modified by conferring changes in the water adsorption capacity affecting their physicochemical properties and their stability during storage.

Keywords

Antioxidant activity Anthocyanins, colorant Microstructure Modification 

Resumen

El almidón de papa se ha utilizado en la protección de antioxidantes, pero su uso es limitado debido a sus propiedades fisicoquímicas por lo que el objetivo de este trabajo fue evaluar el efecto de la modificación física de almidón de papa, mediante gelatinización, aspersión-congelación sobre nitrógeno líquido y congelación en nitrógeno líquido sobre las propiedades fisicoquímicas y estabilidad de polvos adicionados con jugo de zarzamora. El almidón de papa congelado con nitrógeno líquido exhibió una mayor retención de color y antocianinas durante su procesamiento, así como adecuadas propiedades fisicoquímicas y de flujo. Mientras que el almidón asperjado-congelado sobre nitrógeno líquido tuvo una mayor retención de antocianinas, polifenoles y actividad antioxidante durante el almacenamiento en condiciones controladas. La microscopia de fuerza atómica reveló la modificación en la microestructura de los polvos desarrollados. Estos resultados demostraron que la microestructura de los polvos fue modificada confiriendo cambios en la capacidad de adsorción de agua afectando sus propiedades fisicoquímicas y su estabilidad durante el almacenamiento.

Notes

Acknowledgments

The authors acknowledge the support to the Research and Development of Food Laboratory (L-IDEA), and the National Council of Science and Technology (CONACyT) (Grant number 260107).

References

  1. A.O.A.C. 1995. Official Methods of Analysis, 15th Ed. Washington: HorwithGoogle Scholar
  2. Acosta-Domínguez, L., and H. Hernández-Sánchez. 2016. G.F. Gutiérrez-López, L.Alamilla-Beltrán, E. Modification of the soy protein isolate surface at nanometric scale and its effect on physicochemical properties. Journal of Food Engineering 168: 105–112.Google Scholar
  3. Albert, L.C., C. Kemston, H. Tzou-Chi, C. Yung-Ho, C. Jhih-Ying, C. Jenq-Sheng, and L. Hsin-Hung. 2016. Functional properties of arrowroot starch in cassava and sweet potato composite starches. Food Hydrocolloids 53: 187–191.CrossRefGoogle Scholar
  4. Al-Muhtaseb, A.H., W.A.M. McMinn, and T.R.A. Magee. 2004. Water sorption isotherms of starch powders part 1: Mathematical description of experimental data. Journal of Food Engineering 61: 297–307.CrossRefGoogle Scholar
  5. Arena, E., B. Fallico, and E. Maccarone. 2000. Influence of carotenoids and pulps on the color modification of blood orange juice. Journal of Food Science 65 (3): 458–460.CrossRefGoogle Scholar
  6. Arijaje, E.O., and Y. Wang. 2017. Effects of chemical and enzymatic modifications on starch-linoleic acid complex formation. Food Chemistry 217: 9–17.CrossRefPubMedGoogle Scholar
  7. Biduski, B., F.T. da Silva, W.M. da Silva, Shanise L.M. El Halal, V.Z. Pinto b, A.R. Guerra-Dias, and E.R. Zavareze. 2017. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chemistry 214: 53–60.CrossRefPubMedGoogle Scholar
  8. Blake, G., and K. Hartge. 1986. In: Methods of soil analysis. Part 1. ASA - SSSA, Madison Wisconsin (USA). Agronomy N° 9. Ed Klute: A 377–382.Google Scholar
  9. Bosmans, G.M., B. Pareyt, and J.A. Delcour. 2016. Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study. Food Chemistry 192: 586–595.CrossRefPubMedGoogle Scholar
  10. Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology 28 (1): 25–30.CrossRefGoogle Scholar
  11. Cai, Y.Z., and H. Corke. 2000. Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science 65: 1248–1252.CrossRefGoogle Scholar
  12. Cano-Chauca, M., P.C. Stringheta, A. Ramos, and J. Cal-Vidal. 2005. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies 6: 420–428.CrossRefGoogle Scholar
  13. Castanha, N., M.D. da Matta, and P.E.D. Augusto. 2017. Potato starch modification using the ozone technology. Food Hydrocolloids 66: 343–356.CrossRefGoogle Scholar
  14. Charles, A.L., T.C. Huang, and Y.H. Chang. 2008. Structural analysis and characterization of a mucopolysaccharide isolated from roots of cassava (Manihot esculenta Crantz L.). Food Hydrocolloids 22 (1): 184–191.CrossRefGoogle Scholar
  15. Chegini, G., and B. Ghobadian. 2005. Effect of spray-drying conditions on physical properties of orange juice powder. Drying Technology 23: 656–668.CrossRefGoogle Scholar
  16. Colussi, R., J. Singh, L. Kaur, E.R. Zavareze, A.R. Guerra Dias, R.B. Stewart, and H. Singh. 2017. Microstructural characteristics and gastro-small intestinal digestion in vitro of potato starch: Effects of refrigerated storage and reheating in microwave. Food Chemistry 226: 171–178.CrossRefPubMedGoogle Scholar
  17. Cooper, J., and C. Gunn. 1986. Powder flow and compaction. In Tutorial pharmacy, ed. S.J. Carter, 211–233. New Delhi: CBS publishers and distributors.Google Scholar
  18. Costa-García, L., L. Mendes-Pereira, C. Luca Sarantópoulos, and M. Dupas Hubinger. 2010. Selection of an edible starch coating for minimally processed strawberry. Food and Bioprocess Technology 3: 834–842.CrossRefGoogle Scholar
  19. Davoodi, M., G. Kavoosi, and R. Shakeri. 2017. Preparation and characterization of potato starch-thymol dispersion and film as potential antioxidant and antibacterial materials. International Journal of Biological Macromolecules 104: 173–179.CrossRefPubMedGoogle Scholar
  20. Delcour, J.A., and R.C. Hoseney. 2010. Principles of cereal science and technology. 3rd ed. AACC International: St.-Paul.CrossRefGoogle Scholar
  21. Desobry, S.A., F.M. Netto, and T.P. Labuza. 1999. Influence of maltodextrin system at an equivalent 25DE on encapsulated β-carotene loss during storage. Journal of Food Processing & Preservation 23: 39–55.CrossRefGoogle Scholar
  22. Díaz, D.I., C.I. Beristain, E. Azuara, G. Luna, and M. Jiménez. 2015. Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. Journal of Microencapsulation 32 (3): 247–254.CrossRefPubMedGoogle Scholar
  23. Dominguez, I.L., E. Azuara, E.J. Vernon-Carter, and C.I. Beristain. 2007. Thermodynamic analysis of the effect of water activity on the stability of macadamia nut. Journal of Food Engineering 81: 566–571.CrossRefGoogle Scholar
  24. Engstrom, J., D. Simpson, C. Cloonan, E. Lai, R. Williams III, G. Kitto, and K. Johnston. 2007. Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. European Journal of Pharmaceutics and Biopharmaceutics 65 (2): 163–174.CrossRefPubMedGoogle Scholar
  25. Ferrari, C., S. Germer, I. Alvim, F. Vissotto, and J. de Aguirre. 2012. Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International journal of food science. Technology 47 (6): 1237–1245.Google Scholar
  26. Fornal, J., J. Sadowska, W. Blaszczak, T. Jelisnki, M. Stasiak, M. Molenda, and M. Hajnos. 2012. Influence of some chemical modifications on the characteristics of potato starch powders. Journal of Food Engineering 108: 515–522.CrossRefGoogle Scholar
  27. Garzón, G. 2008. Las antocianinas como colorantes naturales y compuestos bioactivos: revisión. Acta Biológica Colombiana 13 (3): 27–36.Google Scholar
  28. Gryszkin, A., T. Zieba, M. Kapelko, and A. Buczek. 2014. Effect of thermal modifications of potato starch on its selected properties. Food Hydrocolloids 40: 122–127.CrossRefGoogle Scholar
  29. Hassan, H., and A. Abdel-Aziz. 2010. Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food and Chemical Toxicology 48: 1999–2004.CrossRefPubMedGoogle Scholar
  30. Hermansson, A.M., and K. Svegmark. 1996. Developments in the understanding of starch functionality. Trends in Food Science and Technology 7: 345–353.CrossRefGoogle Scholar
  31. Islam, M.Z., Y. Kitamura, M. Kokawa, K. Monalisa, F.H. Tsaia, and S. Miyamura. 2017. Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food and Bioproducts Processing 10: 132–144.CrossRefGoogle Scholar
  32. Janaswamy, S. 2014. Encapsulation altered starch digestion: Toward developingstarch-based delivery systems. Carbohydrate Polymers 101: 600–605.CrossRefPubMedGoogle Scholar
  33. Jayasundera, M., B. Adhikari, T. Howes, and P. Aldred. 2011. Surface protein coverage and its implications on spray-drying of model sugar-rich foods: Solubility, powder production and characterization. Food Chemistry 128: 1003–1016.CrossRefGoogle Scholar
  34. Jaya, S., and H. Das. 2004. Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. Journal of Food Engineering 63(2): 125–134.Google Scholar
  35. Jiang, S., C. Liu, X. Wang, L. Xiong, and Q. Sun. 2016. Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT - Food Science and Technology 69: 251–257.CrossRefGoogle Scholar
  36. Jinapong, N., M. Suphantharika, and P. Jamnong. 2008. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering 84 (2): 194–205.CrossRefGoogle Scholar
  37. Kapusniak, K., and E. Nebesny. 2017. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry. Carbohydrate Polymers 172: 152–158.CrossRefGoogle Scholar
  38. Lao, F., and M.M. Giusti. 2016. Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: Method comparison and correlation. Food Analytical Methods 9: 1367–1380.CrossRefGoogle Scholar
  39. Leach, W., D. Simpson, T. Val, E. Anuta, Z. Yu, R. Williams, and K. Johnston. 2005. Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release. Journal of Pharmaceutical Sciences 94 (1): 56–69.CrossRefPubMedGoogle Scholar
  40. Lewis, M.J. 1987. Physical properties of foods and food processing systems: 51–64. Chichester: Ellis Horwood Ltd..Google Scholar
  41. Li, D., N. Yang, X. Zhou, Y. Jin, L. Guo, Z. Xie, Z. Jin, and X. Xu. 2017. Characterization of acid hydrolysis of granular potato starch under induced electric field. Food Hydrocolloids 71: 198–206.CrossRefGoogle Scholar
  42. Loksuwan, J. 2007. Characteristics of microencapsulated β carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids 21: 928–935.CrossRefGoogle Scholar
  43. Lu, Z.H., E. Donner, R.Y. Yada, and Q. Liu. 2012. The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel. Food Chemistry 133 (4): 1214–1221.CrossRefGoogle Scholar
  44. Manea, A., S. Bogdan, and A. Meghea. 2014. Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. Comptes Rendus Chimie 17 (4): 331–341.CrossRefGoogle Scholar
  45. Molenda, M., M. Stasiak, J. Horabik, J. Fornal, W. Błaszczak, and A. Ornowski. 2006. Microstructure and mechanical parameters of five types of starch. Polish Journal of Food and Nutrition Sciences 15/56 (2): 161–168.Google Scholar
  46. Nadir, A.S., I.M.F. Helmy, N.M. Abdelmaguid, M. Wafaa, M. Abozeid, and M.T. Ramadan. 2015. Modification of potato starch by some different physical methods and utilization in cookies production. International Journal of Current Microbiology and Applied Sciences 4 (10): 556–569.Google Scholar
  47. Olaya, C.M., M.P. Castaño, and G.A. Garzón. 2009. Stability of anthocyanins from Rubus glaucus and Solanum betaceum Cav.dark-red strain as affected by temperature and water activity. Acta Biológica Colombiana 14 (3): 143–158.Google Scholar
  48. Parada, J., and J.M. Aguilera. 2012. Effect of native crystalline structure of isolated potato starch on gelatinization behavior and consequently on glycemic response. Food Research International 45: 238–243.CrossRefGoogle Scholar
  49. Patras, A., N. Brunton, C. O'Donnell, and B. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science and Technology 21 (1): 3–11.CrossRefGoogle Scholar
  50. Pothakamury, U., and G. Barbosa-Canovas. 1995. Fundamental aspects of controlled release in foods. Trends in Food Science and Technology 6: 397–406.CrossRefGoogle Scholar
  51. Quirijns, E.J., A.J. Van Boxtel, W.K. van Loon, and G. Van Straten. 2005. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture 85 (11): 1805–1814.CrossRefGoogle Scholar
  52. Rao, M. 2009. Nanoscale particles in food and food packaging. Journal of Food Science 74 (9): VIII.CrossRefPubMedGoogle Scholar
  53. Robson, J. 1994. Starch manufacturing: A profile. Final report. U.S. Environmental Protection Agency. Research Triangle Institute. EPA contract number 68-01-0143. RTI Project 35U: 5681–5671.Google Scholar
  54. Sekhon, B. 2010. Food nanotechnology-an overview. Nanotechnology, Science and Applications 3: 1-15.Google Scholar
  55. Shah, D., Y. Shah, and M. Rampradhan. 1997. Development and evaluation of controlled release diltiazem hydrochloride micro particles using cross-linked poly (vinyl alcohol). Drug Development and Industrial Pharmacy 23 (6): 567–574.CrossRefGoogle Scholar
  56. Singh, J., L. Kaur, and O.J. McCarthy. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications – A review. Food Hydrocolloids 21: 1–22.CrossRefGoogle Scholar
  57. Singh, J., L. Kaur, and O.J. McCarthy. 2009. Potato starch and its modification. In Advances in potato chemistry and technology, ed. J. Singh and L. Kaur, 273–318. USA: Academic Press.CrossRefGoogle Scholar
  58. Singleton, V., R. Orthofer, and R. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent. Methods in Enzymology 299: 152–178.CrossRefGoogle Scholar
  59. Telis, V.R.N., and N. Martinez-Navarrete. 2009. Collapse and color changes in grapefruit juice powder as affected by water activity, glass transition and addition of carbohydrate polymers. Foods. Biophysics 4 (2): 83–93.Google Scholar
  60. Ting-Ting, H., Z. Da-Nian, J. Zheng-Yu, X. Xue-Ming, and C. Han-Qing. 2016. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids 54: 202–210.CrossRefGoogle Scholar
  61. Tonon, R., C. Brabet, and M. Hubinger. 2010. Anthocyanin stability and antioxidant activity of spray dried acai (Euterpe oleracea Mart.) juice powder produced with different carrier agents. Food Research International 43: 907–914.CrossRefGoogle Scholar
  62. Tsami, E., D. Marinos-Kouris, and Z.B. Maroulis. 1990. Water sorption isotherms of raisins, currants, figs, prunes and apricots. Journal of Food Science 55 (6): 1594–1597.CrossRefGoogle Scholar
  63. Turfan, O., M. Turkyılmaz, O. Yemis, and M. Ozkan. 2011. Anthocyanin and colour changes during processing of pomegranate (Punica granatum L., cv. Hicaznar) juice from sacs and whole fruit. Food Chemistry 129: 1644–1651.CrossRefGoogle Scholar
  64. Viveros-Contreras, R., M.D. Téllez, F.M. Perea, B.L. Alamilla, M.M. Cornejo, G.C. Beristain, N.E. Azuara, and L.G. Gutiérrez. 2013. Encapsulation of ascorbic acid into calcium alginate matrices through coacervation coupled to freeze-drying. Revista de Ingeniería Química 12: 29–39.Google Scholar
  65. Wallace, T., and M. Giusti. 2008. Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science 73: 241–248.CrossRefGoogle Scholar
  66. Wang, H., X. Guo, X. Hu, T. Li, X. Fu, and R.H. Liu. 2017. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chemistry 217: 773–781.CrossRefPubMedGoogle Scholar
  67. Weisser, H. 1985. Influence of temperature on sorption equilibria. In Properties of water in foods, ed. D. Simato and J.L. Multon, 133–151. Dordrecht: Martinus Nijhoff Publishers.Google Scholar
  68. Wrolstad, R. 2001. Extraction, isolation, and purification of Anthocyanins. Current protocols in food analytical chemistry. Copyright @ 2001 by John Wiley and Sons. Inc.Google Scholar
  69. Yu, Z., A. Garcia, K. Johnston, and R. Williams III. 2004. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. European Journal of Pharmaceutics and Biopharmaceutics 58 (3): 529–537.CrossRefPubMedGoogle Scholar
  70. Zeller, B.L., and F.Z. Saleeb. 1996. Production of microporous sugars for adsorption of volatile flavors. Journal of Food Science 61: 749–752.CrossRefGoogle Scholar
  71. Zhu, F. 2017. Encapsulation and delivery of food ingredients using starch based systems. Food Chemistry 229: 542–552.CrossRefPubMedGoogle Scholar

Copyright information

© The Potato Association of America 2017

Authors and Affiliations

  • H. E. Romero-Luna
    • 1
  • E. Azuara
    • 1
  • C. I. Beristain
    • 1
  • J. J. Chanona-Pérez
    • 2
  • A. Hernández-Mendoza
    • 3
  • M. Jiménez
    • 1
  1. 1.Instituto de Ciencias BásicasUniversidad VeracruzanaXalapa, VeracruzMexico
  2. 2.Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, IPNGustavo A. MaderoMexico
  3. 3.Centro de Investigación en Alimentación y Desarrollo, A.C., Departamento de Tecnología de Alimentos de Origen AnimalHermosillo, SonMexico

Personalised recommendations