Abstract
Plant subtilisin-like serine proteases or subtilases constitute a large expanded gene subfamily in potato. We identified 82 potato subtilases encoded by 74 genes. All subtilases present a characteristic S08 domain, and the majority of them have an association protein domain, an inhibition_I9 domain and a signal peptide that consists of a signal sequence for targeting to the secretory pathway. Phylogenetic studies revealed five subtilase groups named StSBT1 to StSBT5. A genome expansion of potato subtilase subfamily was reflected in two phylogenetic clusters, StSBT1 and StSBT4 both characterized by intronless genes in tandem arrays mainly in chromosome I and VIII. Twenty nine of the identified subtilases co-localize with six out of 24 metaQTLs related to late blight resistance previously described in potato. These metaQTLs includes subtilase genes up regulated in detached potato leaves inoculated with P. infestans, some of which are homologous to p69 subtilases genes from tomato.
Resumen
Las serin proteasas tipo subtilisinas o subtilasas constituyen una gran subfamilia de genes en papa. En este trabajo se identificaron 82 subtilasas codificadas por 74 genes. Todas las subtilasas presentan un dominio S08 característico, y la mayoría de ellas poseen un dominio asociado a proteasa, un dominio inhibidor I9 y un péptido señal que consiste en una señal que conduce a la vía secretora. En los estudios filogenéticos se describen cinco grupos de subtilasas nombrados de StSBT1 a StSBT5. La expansión en la subfamilia de subtilasas se ve reflejada en dos grupos, StSBT1 y StSBT4, caracterizados por la presencia de genes sin intrones con disposición en tándem localizados en el cromosoma I y VIII. Veintinueve de las subtilasas identificadas co-localizan con seis de los 24 metaQTLs de resistencia a tizón tardío previamente descriptos en papa. Estos metaQTLs incluyen genes de subtilasas con regulación positiva en ensayos de hojas de papa desprendidas inoculadas con P. infestans, algunos de los cuáles son homologos a genes de subtilasas p69 descriptos en tomate.





References
Altamiranda, E.A.G., A.B. Andreu, G.R. Daleo, and F.P. Olivieri. 2008. Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Australasian Plant Pathology 37(4): 421–427.
Antão, C.M., and F.X. Malcata. 2005. Plant serine proteases: biochemical, physiological and molecular features. Plant Physiology and Biochemestry 4: 637–50.
Arya, P., G. Kumar, and A.K. Acharya. 2014. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae. PloS One 9(9), e107987. doi:10.1371/journal.pone.0107987.
Beers, E., A.M. Jones, and A.W. Dickerman. 2004. The S8 serine, CIA cysteine and AI aspartic protease families in Arabidopsis. Phytochemistry 65: 43–58.
Berger, D., and T. Altmann. 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Development 14: 1119–1131.
Cao, J., X. Han, T. Zhang, Y. Yang, J. Huang, and X. Hu. 2014. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera. BMC Genomics 15: 1116.
Coffeen, W.C., and T.J. Wolpert. 2004. Purification and characterization of seríne proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. The Plant Cell 16: 857–873.
Danan, S., J.B. Veyrieras, and V. Lefebvre. 2011. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biology 11: 16.
Dixon, R.A., and C.J. Lamb. 1990. Molecular communication in interactions between plants and microbial pathogens. Annual Review of Plant Physiology and Plant Molecular Biology 41: 339–367.
Dong, S., R. Stam, L.M. Cano, J. Song, J. Sklenar, K. Yoshida, T.O. Bozkurt, R. Oliva, Z. Liu, M. Tian, J. Win, M.J. Banfield, A.M.E. Jones, R.A.L. van der Hoorn, and S. Kamoun. 2014. Effector specialization in a lineage of the Irish potato famine pathogen. Science 343: 552–555.
Eddy, S. 1998. Profile hidden markov models. Bioinformatics 14(9): 755–763.
Emanuelsson, O., N. Nielsen, S. Brunak, and G. von Heijne. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300: 1005–1016.
Emanuelsson, O., S. Brunak, G. von Heijne, and H. Nielsen. 2007. Locating proteins in the cell using TargetP, SignalP, and related tools. Nature Protocols 2: 953–971.
Fernández, M.B., G.R. Daleo, and M.G. Guevara. 2012. DEVDase activity is induced in potato leaves during Phytophtthora inestans infection. Plant Physiology and Biochemestry 61: 197–203.
Fernández, M.B., G.R. Daleo, and M.G. Guevara. 2015. Isolation and characterization of a Solanum tuberosum subtilisin-like protein with caspase-3 activity (StSBTc-3). Plant Physiology and Biochemistry 86: 137–146.
Golldack, D., P. Vera, and K.J. Dietz. 2003. Expression of subtilisin-like serine proteases in Arabidopsis thaliana is cell-specific and responds to jasmonic acid and heavy metals with developmental differences. Physiologia Plantarum 118(1): 64–73.
Haas, B.J., S. Kamoun, M.C. Zody, R.H. Jiang, R.E. Handsaker, L.M. Cano, M. Grabherr, C.D. Kodira, S. Raffaele, T. Torto-Alalibo, T.O. Bozkurt, A.M. Ah-Fong, L. Alvarado, V.L. Anderson, M.R. Armstrong, A. Avrova, L. Baxter, J. Beynon, P.C. Boevink, S.R. Bollmann, J.I. Bos, V. Bulone, G. Cai, C. Cakir, J.C. Carrington, M. Chawner, L. Conti, S. Costanzo, R. Ewan, N. Fahlgren, M.A. Fischbach, J. Fugelstad, E.M. Gilroy, S. Gnerre, P.J. Green, L.J. Grenville-Briggs, J. Griffith, N.J. Grünwald, K. Horn, N.R. Horner, C.H. Hu, E. Huitema, D.H. Jeong, A.M. Jones, J.D. Jones, R.W. Jones, E.K. Karlsson, S.G. Kunjeti, K. Lamour, Z. Liu, L. Ma, D. Maclean, M.C. Chibucos, H. McDonald, J. McWalters, H.J. Meijer, W. Morgan, P.F. Morris, C.A. Munro, K. O’Neill, M. Ospina-Giraldo, A. Pinzón, L. Pritchard, B. Ramsahoye, Q. Ren, S. Restrepo, S. Roy, A. Sadanandom, A. Savidor, S. Schornack, D.C. Schwartz, U.D. Schumann, B. Schwessinger, L. Seyer, T. Sharpe, C. Silvar, J. Song, D.J. Studholme, S. Sykes, M. Thines, P.J. van de Vondervoort, V. Phuntumart, S. Wawra, R. Weide, J. Win, C. Young, S. Zhou, W. Fry, B.C. Meyers, P. van West, J. Ristaino, F. Govers, P.R. Birch, S.C. Whisson, H.S. Judelson, and C. Nusbaum. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461(7262): 393–8.
Halim, V.A., L. Eschen-Lippold, S. Altmann, M. Birschwilks, D. Scheel, and S. Rosahl. 2007. Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Molecular Plant Microbe Interactions 20(11): 1346–1352.
Jain, M., P. Khurana, A.K. Tyagi, and J.P. Khurana. 2008. Genome-wide analysis of intronless genes in rice and Arabidopsis. Functional Integrative Genomics. doi:10.1007/s10142-007-0052-9.
Jakab, G., V. Cottier, V. Toquin, G. Rigoli, L. Zimmerli, J.P. Metraux, and B. Mauch-Mani. 2001. β-Aminobutyric acid-induced resistance in plants. European Journal of Plant Pathology 107(1): 29–37.
Jones, P., D. Binns, H. Chang, M. Fraser, W. Li, C. McAnulla, M.W. Hamish, J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A.F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S.W. Yong, R. Lopez, and S. Hunter. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics. doi:10.1093/bioinformatics/btu031.
Jordá, L., A. Coego, V. Conejero, and P. Vera. 1999. A genomic cluster containing four differentially regulated subtilisin-like processing protease genes is in tomato plants. Journal of Biological Chemistry 274(4): 2360–2365.
Jordá, L., V. Conejero, and P. Vera. 2000. Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin-like proteinase family from tomato plants. Plant Physiology 122(1): 67–74.
Käll, L., A. Krogh, and E.L.L. Sonnhammer. 2007. Advantages of combined transmembrane topology and signal peptide prediction. The Phobius web server. Nucleic Acids Research 35: W429–32.
Letunic, I., and P. Bork. 2006. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23(1): 127–8.
Letunic, I., and P. Bork. 2011. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research 39: W475–8.
Luo, X., and K. Hofmann. 2001. The protease associated domain: a homology domain associated with multiple classes of proteases. Trends Biochememical Science 26: 147–148.
Mahon, P., and A. Bateman. 2000. The PA domain: a protease-associated domain. Protein Science 9: 1930–1934.
Mazin PV, Gelfand MS, Mironov AA, Rakhmaninova AB, Rubinov AR, Russell RB, Kalinina OV. 2010. An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies. Algorithms for Molecular Biology:5–29.
Meichtry, J., N. Amrhein, and A. Schaller. 1999. Characterization of the subtilase gene family in tomato (Lycopersicon esculentum Mill). Plant Molecular Biology 39(4): 749–760.
Muszewska, A., J.W. Taylor, P. Szczesny, and M. Grynberg. 2011. Independent subtilases expansions in fungi associated with animals. Molecular Biology Evolution 28(12): 3395–3404.
Neuteboom, L.W., J.M. Ng, M. Kuyper, O.R. Clijdesdale, P.J. Hooykaas, and B.J. van der Zaal. 1999. Isolation and characterization of cDNA clones corresponding with mRNAs that accumulate during auxin-induced lateral root formation. Plant Molecular Biology 39(2): 273–87.
Nowicki M, Foolad MJ, Nowakowska M, Kozik EU (2012). Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease 96(1).
Page, R.D.M., and E.C. Holmes. 1998. Molecular evolution: a phylogenetic approach. blackwell science, 1st ed. Oxford: Utopia Press.
Potato Genome Sequence Consortium (PGSC). 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.
Punta, M., P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L.L. Sonnhammer, S.R.R. Eddy, A.A. Bateman, and R.D. Finn. 2012. The Pfam protein families database: nucleic acids research. Database Issue 40: 290–301.
Punta, M., P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L.L. Sonnhammer, S.R.R. Eddy, A.A. Bateman, and R.D. Finn. 2014. The Pfam protein families database: nucleic acids research. Database Issue 42: 222–230.
Raffaele, S., R.A.L. Farrer, M.L. Cano, D.J. Studholme, D. MacLean, M. Thines, R.H.Y. Jiang, M.C. Zody, S.G. Kunjeti, M.N. Donofrio, B.C. Meyers, C. Nusbaum, and S. Kamoun. 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330: 1540–1543.
Ramirez, V., A. López, B. Mauch-Mani, M.J. Gil, and P. Vera. 2013. An extracellular subtilases switch for immune priming in Arabidopsis. PLoS Pathology 9(6), e1003445. doi:10.1371/journal.ppat.1003445.
Rautengarten, C., D. Steinhauser, D. Büssis, A. Stintzi, A. Schaller, J. Kopka, and T. Altmann. 2005. Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Computational Biology 1: e40. doi:10.1371/journal.pcbi.0010040.
Rawlings, N., F. Morton, and A. Barrett. 2006. MEROPS: the peptidase database. Nucleic Acids Research 34: D270–D272. doi:10.1093/nar/gkj089.
Ribeiro, A., A.D. Akkermans, A. van Kammen, T. Bisseling, and K. Pawlowski. 1995. A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7(6): 785–94.
Riggs, C.D., K. Zeman, R. Deguzman, A. Rzepczyk, and A.A. Taylor. 2001. Antisense inhibition of a tomato meiotic proteinase suggests functional redundancy of proteinases during microsporogenesis. Genome 44: 644–650.
Sakharkar, M.K., and P. Kangueane. 2004. Genome SEGE: a database for ‘intronless’ genes in eukaryotic genomes. BMC Bioinformatics 5: 67.
Schaller, A., A. Stintzi, and L. Graff. 2012. Subtilases – versatile tools for protein turnover, plant development, and interactions with the environment. Physiologia Plantarum 145: 52–66.
Schuster-Böckler, B., J. Schultz, and S. Rahmann. 2004. HMM Logos for visualization of protein families. BMC Bioinformatics 5: 7.
Sharma, S.K., D. Bolser, J. de Boer, M. Sonderkær, W. Amoros, M.F. Carboni, J.M. D’Ambrosio, G. de la Cruz, A. Di Genova, D.S. Douches, M. Eguiluz, X. Guo, F. Guzman, C.A. Hackett, J.P. Hamilton, G. Li, Y. Li, R. Lozano, A. Maass, D. Marshall, D. Martinez, K. McLean, N. Mejía, L. Milne, S. Munive, I. Nagy, O. Ponce, M. Ramirez, R. Simon, S.J. Thomson, Y. Torres, R. Waugh, Z. Zhang, S. Huang, R.G.F. Visser, C.W.B. Bachem, B. Sagredo, S.E. Feingold, G. Orjeda, R.E. Veilleux, M. Bonierbale, J.M.E. Jacobs, D. Milbourne, D.M.A. Martin, and G.J. Bryan. 2013. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3: Genes, Genomes, Genetics 3: 2031–2047.
Siezen, R.J. 1996. Subtilases: subtilisin-like serine protease. Advances in Experimental Medicine and Biology 379: 75–93.
Siezen, R.J., and J.A. Leunissen. 1997. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Science 6(3): 501–23.
Siezen, R.J., B. Renckens, and J. Boekhorst. 2007. Evolution of prokaryotic subtilases: genome-wide analysis reveals novel subfamilies with different catalytic residues. Proteins 67(3): 681–994.
Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.
Tanaka, H., H. Onouchi, M. Kondo, I. Hara-Nishimura, M. Nishimura, C. Machida, and Y. Machida. 2001. A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128(23): 4681–9.
Tian, M., E. Huitema, L. Cunha, T. Torto-Alalibo, and S. Kamoun. 2004. A Kazal-like extracellular seríne protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. The Journal of Biology Chemistry 279: 26370–26377.
Tian, M., B. Benedetti, and S. Kamoun. 2005. A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the appoplastic pathogenesis-related protease P69B of tomato. Plant Physiology 138: 1785–1793.
Tornero, P., V. Conejero, and P. Vera. 1996. Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases. Proceedings National Academic of Science. Plant Biology. EEUU 93: 6332–6337.
Tornero, P., V. Conejero, and P. Vera. 1997. Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. Journal of Biologycal Chemistry 272(22): 14412–9.
Tripathi, L.P., and R. Sowdhamini. 2006. Cross genome comparisons of serine proteases in Arabidopsis and rice. BMC Genomics 7: 200.
Vartapetian, A.B., A.I. Tuzhikov, N.V. Chichkova, M. Taliansky, and T.J. Wolpert. 2011. A plant alternative to animal caspases: subtilisin-like proteases. Cell Death Differentiation 18: 1289–1297.
Von Groll, U., D. Berger, and T. Altmann. 2002. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14(7): 1527–39.
Zhang, R., F. Murat, C. Pont, T. Langin, and J. Salse. 2014. Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics 15: 187. doi:10.1186/1471-2164-15-187.
Zhao, C., B.J. Johnson, B. Kositsup, and E.P. Beers. 2000. Exploiting secondary growth in Arabidopsis. Plant Physiology 123(3): 1185–1196.
Acknowledgments
This paper is submitted in partial fulfillment of Natalia Norero Doctoral degree at Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina. We thanks Gabriela Massa for fruitful discussions while working in the paper. This work was financed by the Instituto Nacional de Tecnología Agropecuaria (INTA), Ministerio de Tecnología e Innovación Productiva, Agencia Nacional de Promoción Científica y Tecnológica, PICT-2010-2037 and NN doctoral fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
HMMER2.3.2. profile (DOCX 28 kb)
ESM 2
Figure 1: HMMER logo used for potato subtilases identification. It was built with LogoMat-M (Schuster-Böckler et al. 2004) (PPT 412 kb)
ESM 3
HMMER2.3.2. output file. Subtilases identification on PGSC database. (DOC 117 kb)
ESM 4
HMMER2.3.2. output file. Subtilases identification on TAIR database. (XLS 33 kb)
ESM 5
Table 1: Specificity determining positions of StSBT groups. The table was obtained with SDPfox software (Mazin et al. 2010). (XLS 28 kb)
ESM 6
Table 2: Subcellular localization predictions of subtilases (DOC 175 kb)
ESM 7
Table 3: Potato subtilases and metaQTLs of late blight resistance localization in potato genome (PGSC V4.0, 2011). (DOC 110 kb)
Rights and permissions
About this article
Cite this article
Norero, N.S., Castellote, M.A., de la Canal, L. et al. Genome-Wide Analyses of Subtilisin-Like Serine Proteases on Solanum tuberosum . Am. J. Potato Res. 93, 485–496 (2016). https://doi.org/10.1007/s12230-016-9525-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12230-016-9525-5