American Journal of Potato Research

, Volume 93, Issue 3, pp 278–287 | Cite as

Exposure of Potato Tuber to Varying Concentrations of 1,4-Dimethylnaphthalene Decrease the Expression of Transcripts for Plastid Proteins

  • Michael A. CampbellEmail author
  • Olivia D’Annibale


Application of the compound 1,4-dimethylnaphthalene (DMN) has been found to reduce premature sprouting in stored potato tubers. The mechanism of action for DMN has yet to be elucidated but transcriptional changes are known to occur following exposure. In this study non-dormant potato tubers (Solanum tuberosum L., cv. Russet Burbank) were treated with varying amounts of DMN resulting in an increasing residue on the tuber surface. RNA sequencing was used to measure transcriptome changes in excised meristems from tubers having increasing DMN exposure. Treatment of tubers with DMN that resulted in surface residue levels greater than 2 ppm was associated with a decrease in 45 transcripts that encoded for proteins linked with plastid development and function and an increase in the expression of 15 transcripts that encoded for WRKY-type transcription factors. qt-PCR analysis showed that repression of plastid transcripts appeared to recover 7 days after DMN exposure but induction of WRKY transcripts was maintained up to 35 days post treatment. The data suggests DMN may inhibit plastid development short term but also results in long-term changes in some regions of the transcriptome.


Sprouting Sprout control Dimethylnaphthalene DMN Potato transcriptome 







Se ha encontrado que la aplicación del compuesto 1,4-dimetilnaftaleno (DMN) reduce la brotación prematura en tubérculos de papa almacenados. Aún tiene que elucidarse el mecanismo de acción del DMS, pero se sabe que ocurren cambios transcripcionales después de la exposición. En este estudio, a tubérculos de papa (Solanum tuberosum L. cv. Russet Burbank) no en reposo se les trató con diferentes cantidades de DMN, lo que resultó en un aumento de residuo en la superficie del tubérculo. Se usó secuenciación de ARN para medir los cambios en el transcriptoma en meristemos cortados de tubérculos que tuvieron exposición en aumento de DMN. El tratamiento de tubérculos con DMN que dio por resultado niveles de residuos en la superficie mayores a 2 ppm, se asoció con una disminución en 45 transcriptos que codificaban para proteínas ligadas con el desarrollo y función de plástidos, y en un aumento en la expresión de 15 transcriptos que codificaban para factores de transcripción del tipo WRKY. El análisis de qt-PCR mostró que la represión de transcriptos de plástidos parecía recuperarse siete días después de la exposición a DMN, pero la inducción de los transcriptos de WRKY se mantuvo hasta 35 días después del tratamiento. Los datos sugieren que DMN pudiera inhibir el desarrollo de plástidos por un período corto, pero también resulta en cambios a largo plazo en algunas regiones del transcriptoma.



DNA sequencing was provided by the Penn State Genomics Core Facility - University Park, PA. Funding was provided in part by the 1,4-Group, Meridian ID and the Penn State Erie undergraduate competitive grants program to O.D.

Supplementary material

12230_2016_9504_MOESM1_ESM.xlsx (174 kb)
Supplementary Table 1 (XLSX 174 kb)
12230_2016_9504_MOESM2_ESM.xlsx (18.1 mb)
Supplementary Table 2 (XLSX 18505 kb)


  1. Beveridge, J., J. Dalziel, and H. Duncan. 1981. Dimethylnaphthalene as a sprout suppressent for seed and ware potatoes. Potato Research 24: 77–88.CrossRefGoogle Scholar
  2. Burch-Smith, T.M., and P.C. Zambryski. 2012. Plasmodesmata paradigm shift: Regulation from without versus within. Annual Review of Plant Biology 63: 239–260.CrossRefPubMedGoogle Scholar
  3. Campbell, M., A. Gleichsner, R. Alsbury, D. Horvath, and J. Suttle. 2010. The sprout inhibitors chlorpropham and 1,4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Plant Molecular Biology 73: 181–189.CrossRefPubMedGoogle Scholar
  4. Campbell, M., A. Gleichsner, L. Hilldorfer, D. Horvath, and J. Suttle. 2011. The sprout inhibitor 1,4-dimethylnaphthalene induces the expression of the cell cycle inhibitors KRP1 and KRP2 in potatoes. Functional & Integrative Genomics 12: 533–541.CrossRefGoogle Scholar
  5. Chen, L., Y. Song, S. Li, L. Zhang, C. Zou, and D. Yu. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819: 120–128.CrossRefGoogle Scholar
  6. Consortium TPGS. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.CrossRefGoogle Scholar
  7. Delker, C., I. Stenzel, B. Hause, O. Miersch, I. Feussner, and C. Wasternack. 2006. Jasmonate biosynthesis in arabidopsis thaliana - enzymes, products, regulation. Plant Biology 8: 297–306.CrossRefPubMedGoogle Scholar
  8. Gao, Q.-M., S. Venugopal, D. Navarre, and A. Kachroo. 2011. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology 155: 464–476.CrossRefPubMedGoogle Scholar
  9. Huang, S., Y. Gao, J. Liu, X. Peng, X. Niu, Z. Fei, S. Cao, and Y. Liu. 2012. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics 287: 495–513.CrossRefPubMedGoogle Scholar
  10. Inzé, D., and L. De Veylder. 2006. Cell cycle regulation in plant development1. Annual Review of Genetics 40: 77–105.CrossRefPubMedGoogle Scholar
  11. Katoh, K., and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Rabara, R.C., P. Tripathi, J. Lin, and P.J. Rushton. 2013. Dehydration-induced WRKY genes from tobacco and soybean respond to jasmonic acid treatments in BY-2 cell culture. Biochemical and Biophysical Research Communications 431: 409–414.CrossRefPubMedGoogle Scholar
  13. Rushton, P.J., I.E. Somssich, P. Ringler, and Q.J. Shen. 2010. WRKY transcription factors. Trends in Plant Science 15: 247–258.CrossRefPubMedGoogle Scholar
  14. Sonnewald, U. 2001. Control of potato tuber sprouting. Trends in Plant Science 6: 333–335.CrossRefPubMedGoogle Scholar
  15. Sonnewald, S., and U. Sonnewald. 2014. Regulation of potato tuber sprouting. Planta 239: 27–38.CrossRefPubMedGoogle Scholar
  16. Suttle, J.C. 1995. Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubers. Physiologia Plantarum 95: 233–240.CrossRefGoogle Scholar
  17. Suttle, J. 2003. Auxin-induced sprout growth inhibition: Role of endogenous ethylene. American Journal of Potato Research 80: 303–309.CrossRefGoogle Scholar
  18. Tang, X., Z. Tang, S. Huang, J. Liu, J. Liu, W. Shi, X. Tian, Y. Li, D. Zhang, J. Yang, Y. Gao, D. Zeng, P. Hou, X. Niu, Y. Cao, G. Li, X. Li, F. Xiao, and Y. Liu. 2013. Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development. Planta 238: 923–936.CrossRefPubMedGoogle Scholar
  19. Teper-Bamnolker, P., Y. Buskila, Y. Lopesco, S. Ben-Dor, I. Saad, V. Holdengreber, E. Belausov, H. Zemach, N. Ori, A. Lers, and D. Eshel. 2012. Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem. Plant Physiology 158: 2053–2067.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim, D.R. Kelley, H. Pimentel, S.L. Salzberg, J.L. Rinn, and L. Pachter. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7: 562–578.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Tripathi, P., R. Rabara, and P. Rushton. 2014. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239: 255–266.CrossRefPubMedGoogle Scholar
  22. Vaughn, K., and G. Lehnen. 1991. Mitotic disrupter herbicides. Weed Science 39: 450–457.Google Scholar
  23. Waters, M.T., E.C. Moylan, and J.A. Langdale. 2008. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. The Plant Journal 56: 432–444.CrossRefPubMedGoogle Scholar
  24. Yasumura, Y., E.C. Moylan, and J.A. Langdale. 2005. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. The Plant Cell Online 17: 1894–1907.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2016

Authors and Affiliations

  1. 1.School of SciencePenn State Erie, The Behrend CollegeErieUSA

Personalised recommendations