Genome-wide Analysis of the Snakin/GASA Gene Family in Solanum tuberosum cv. Kennebec

Abstract

Snakin/GASA proteins have been involved in different aspects of plant growth and development although their exact role is still intriguing. All of them maintain 12 cysteines of the C-terminus in highly conserved positions that are responsible for their structure and are essential for their biochemical activity as antioxidants. Two members were isolated from Solanum tuberosum to date (Snakin-1 and Snakin-2) and were shown to have antimicrobial activity. We have recently demonstrated that Snakin-1 has additional roles in plant growth and development. We carried out a genome-wide search for new Snakin/GASA family members in potato. 16 Snakin/GASA genes were isolated, sequenced and characterized. Interestingly, we found in Solanum tuberosum subsp. tuberosum cv. Kennebec that Snakin-1, Snakin-2 and Snakin-3 expression is affected by bacterial and/or fungal inoculation. These results strengthen the participation of Snakin-1 and Snakin-2 genes in biotic stress tolerance and suggest that Snakin-3 is also involved in plant defense. The data presented here could be a good starting point for more focused and deep investigations regarding the biological functions of potato Snakin/GASA genes during plant development and in response to environmental stress.

Resumen

A las proteínas Snakin/GASA se les ha involucrado en diferentes aspectos del crecimiento y desarrollo vegetal, aun cuando su papel exacto es intrigante. Todas mantienen doce cisteínas en el extremo C terminal, en posiciones altamente conservadas que son responsables de su estructura y son esenciales para su actividad bioquímica como antioxidantes. Se aislaron dos miembros de Solanum tuberosum a la fecha (Snakin-1 y Snakin-2) y se mostró que tienen actividad antimicrobiana. Recientemente hemos demostrado que Snakin-1 tiene funciones adicionales en el crecimiento y desarrollo de las plantas. Hicimos una búsqueda de amplitud genómica de nuevos miembros de la familia Snakin/GASA en papa. Se aislaron, secuenciaron y caracterizaron 16 genes Snakin/GASA. Interesantemente, encontramos en Solanum tuberosum subesp. tuberosum cv. Kennebec, que la expresión de Snakin-1, Snakin-2 y Snakin-3 es afectada por inoculación bacteriana y/o fúngica. Estos resultados refuerzan la participación de los genes de Snakin-1 y Snakin-2 en tolerancia biótica al estrés y sugiere que Snakin-3 también esta involucrada en la defensa de la planta. Los datos que aquí se presentan pudieran ser un buen punto de partida para investigaciones más enfocadas y profundas en relación a las funciones biológicas de los genes Snakin/GASA de la papa durante el desarrollo de la planta y en respuesta al agobio ambiental.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Almasia N.I., A.A. Bazzini, H.E. Hopp, and C. Vazquez-Rovere. 2008. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Molecular Plant Pathology 9: 329–338.

    CAS  Article  PubMed  Google Scholar 

  2. Almasia, N.I., Narhirñak, V., Hopp, H.E. and Vazquez-Rovere, C. 2010. Isolation and characterization of the tissue and development-specific potato snakin-1 promoter inducible by temperature and wounding. Electronic Journal of Biotechnology.

  3. Alonso-Ramírez A., D. Rodriguez, D. Reyes, J.A. Jimenez, G. Nicolas, M. Lopez-Climent, A. Gomez-Cadenas, and C. Nicolas. 2009. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology 150: 1335–1344.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aubert D., M. Chevillard, A.M. Dorne, G. Arlaud, and M. Herzog. 1998. Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Molecular Biology 36: 871–883.

    CAS  Article  PubMed  Google Scholar 

  5. Balaji V., and C.D. Smart. 2012. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Research 21: 23–37.

    CAS  Article  PubMed  Google Scholar 

  6. Ben-Nissan G., and D. Weiss. 1996. The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation. Plant Molecular Biology 32: 1067–1074.

    CAS  Article  PubMed  Google Scholar 

  7. Ben-Nissan G., J.Y. Lee, A. Borohov, and D. Weiss. 2004. GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. The Plant Journal 37: 229–238.

    CAS  Article  PubMed  Google Scholar 

  8. Berrocal-Lobo M., A. Segura, M. Moreno, G. Lopez, F. Garcia-Olmedo, and A. Molina. 2002. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology 128: 951–961.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bouquin T., C. Meier, R. Foster, M.E. Nielsen, and J. Mundy. 2001. Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiology 127: 450–458.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. de la Fuente J.I., I. Amaya, C. Castillejo, J.F. Sanchez-Sevilla, M.A. Quesada, M.A. Botella, and V. Valpuesta. 2006. The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. Journal of Experimental Botany 57: 2401–2411.

    Article  PubMed  Google Scholar 

  11. Faccio P., C. Vazquez-Rovere, E. Hopp, G. Gonzalez, C. Decima-Oneto, E. Favret, A. Diaz Paleo, and P. Franzone. 2011. Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense snakin-1 gene. Czech Journal of Genetics and Plant Breeding 47: 135–141.

    Google Scholar 

  12. Furukawa T., N. Sakaguchi, and H. Shimada. 2006. Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes & Genetic Systems 81: 171–180.

    CAS  Article  Google Scholar 

  13. Herzog M., A.M. Dorne, and F. Grellet. 1995. GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Molecular Biology 27: 743–752.

    CAS  Article  PubMed  Google Scholar 

  14. Ko C.B., Y.M. Woo, D.J. Lee, M.C. Lee, and C.S. Kim. 2007. Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiology and Biochemistry 45: 722–728.

    CAS  Article  PubMed  Google Scholar 

  15. Kotilainen M., Y. Helariutta, M. Mehto, E. Pollanen, V.A. Albert, P. Elomaa, and T.H. Teeri. 1999. GEG participates in the regulation of cell and organ shape during corolla and carpel development in gerbera hybrida. Plant Cell 11: 1093–1104.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kovalskaya N., and R.W. Hammond. 2009. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expression and Purification 63: 12–17.

    CAS  Article  PubMed  Google Scholar 

  17. Lescot M., P. Dehais, G. Thijs, K. Marchal, Y. Moreau, Y. Van de Peer, P. Rouze, and S. Rombauts. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30: 325–327.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Li K.L., X. Bai, Y. Li, H. Cai, W. Ji, L.L. Tang, Y.D. Wen, and Y.M. Zhu. 2011. GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. Journal of Plant Physiology 168: 2153–2160.

    CAS  Article  PubMed  Google Scholar 

  19. Mao, Z., Zheng, J., Wang, Y., Chen, G., Yang, Y., Feng, D. and Xie, B. 2011. The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica.

  20. Marshall E., L.M. Costa, and J. Gutierrez-Marcos. 2011. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. Journal of Experimental Botany 62: 1677–1686.

    CAS  Article  PubMed  Google Scholar 

  21. Meiyalaghan S., S.J. Thomson, M.W. Fiers, P.J. Barrell, J.M. Latimer, S. Mohan, E.E. Jones, A.J. Conner, and J.M. Jacobs. 2014. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status. BMC Genomics 15: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mohan S., S. Meiyalaghan, J.M. Latimer, M.L. Gatehouse, K.S. Monaghan, B.R. Vanga, A.R. Pitman, E.E. Jones, A.J. Conner, and J.M. Jacobs. 2014. GSL2 over-expression confers resistance to pectobacterium atrosepticum in potato. Theoretical and Applied Genetics 127: 677–689.

    CAS  Article  PubMed  Google Scholar 

  23. Moyano-Canete E., M.L. Bellido, N. Garcia-Caparros, L. Medina-Puche, F. Amil-Ruiz, J.A. Gonzalez-Reyes, J.L. Caballero, J. Munoz-Blanco, and R. Blanco-Portales. 2013. FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant & Cell Physiology 54: 218–236.

    CAS  Article  Google Scholar 

  24. Nahirnak, V. 2015. Análisis funcional de snakin-1 en plantas transgénicas de Solanum tuberosum.

  25. Nahirnak V., N.I. Almasia, H.E. Hopp, and C. Vazquez-Rovere. 2012. Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis. Plant Signaling & Behavior 7: 1004–1008.

    CAS  Article  Google Scholar 

  26. Nahirñak V., N.I. Almasia, P.V. Fernandez, H.E. Hopp, J.M. Estevez, F. Carrari, and C. Vazquez-Rovere. 2012. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiology 158: 252–263.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nicot N., J.F. Hausman, L. Hoffmann, and D. Evers. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56: 2907–2914.

    CAS  Article  PubMed  Google Scholar 

  28. Pfaffl M.W., G.W. Horgan, and L. Dempfle. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30.

  29. Porto W.F., and O.L. Franco. 2013. Theoretical structural insights into the snakin/GASA family. Peptides 44: 163–167.

    CAS  Article  PubMed  Google Scholar 

  30. Ramakers C., J.M. Ruijter, R.H. Deprez, and A.F. Moorman. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters 339: 62–66.

    CAS  Article  PubMed  Google Scholar 

  31. Rong W., L. Qi, J. Wang, L. Du, H. Xu, A. Wang, and Z. Zhang. 2013. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Functional & Integrative Genomics 13: 403–409.

    CAS  Article  Google Scholar 

  32. Roxrud I., S.E. Lid, J.C. Fletcher, E.D. Schmidt, and H.G. Opsahl-Sorteberg. 2007. GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant & Cell Physiology 48: 471–483.

    CAS  Article  Google Scholar 

  33. Rubinovich L., and D. Weiss. 2010. The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. The Plant Journal 64: 1018–1027.

    CAS  Article  PubMed  Google Scholar 

  34. Rubinovich L., S. Ruthstein, and D. Weiss. 2014. The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Molecular Plant 7: 244–247.

    CAS  Article  PubMed  Google Scholar 

  35. Segura A., M. Moreno, F. Madueno, A. Molina, and F. Garcia-Olmedo. 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions 12: 16–23.

    CAS  Article  PubMed  Google Scholar 

  36. Shi L., and N.E. Olszewski. 1998. Gibberellin and abscisic acid regulate GAST1 expression at the level of transcription. Plant Molecular Biology 38: 1053–1060.

    CAS  Article  PubMed  Google Scholar 

  37. Shi L., R.T. Gast, M. Gopalraj, and N.E. Olszewski. 1992. Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. The Plant Journal 2: 153–159.

    CAS  PubMed  Google Scholar 

  38. Silverstein K.A., W.A. Moskal Jr., H.C. Wu, B.A. Underwood, M.A. Graham, C.D. Town, and K.A. VandenBosch. 2007. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. The Plant Journal 51: 262–280.

    CAS  Article  PubMed  Google Scholar 

  39. Sun S., H. Wang, H. Yu, C. Zhong, X. Zhang, J. Peng, and X. Wang. 2013. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany 64: 1637–1647.

    CAS  Article  PubMed  Google Scholar 

  40. Taylor B.H., and C.F. Scheuring. 1994. A molecular marker for lateral root initiation: the RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia. Molecular & General Genetics 243: 148–157.

    CAS  Google Scholar 

  41. Wang L., Z. Wang, Y. Xu, S.H. Joo, S.K. Kim, Z. Xue, Z. Xu, and K. Chong. 2009. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. The Plant Journal 57: 498–510.

    CAS  Article  PubMed  Google Scholar 

  42. Wigoda N., G. Ben-Nissan, D. Granot, A. Schwartz, and D. Weiss. 2006. The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. The Plant Journal 48: 796–805.

    CAS  Article  PubMed  Google Scholar 

  43. Xu X., S. Pan, S. Cheng, B. Zhang, D. Mu, P. Ni, G. Zhang, S. Yang, R. Li, J. Wang, G. Orjeda, F. Guzman, M. Torres, R. Lozano, O. Ponce, D. Martinez, G. De la Cruz, S.K. Chakrabarti, V.U. Patil, K.G. Skryabin, B.B. Kuznetsov, N.V. Ravin, T.V. Kolganova, A.V. Beletsky, A.V. Mardanov, A. Di Genova, D.M. Bolser, D.M. Martin, G. Li, Y. Yang, H. Kuang, Q. Hu, X. Xiong, G.J. Bishop, B. Sagredo, N. Mejia, W. Zagorski, R. Gromadka, J. Gawor, P. Szczesny, S. Huang, Z. Zhang, C. Liang, J. He, Y. Li, Y. He, J. Xu, Y. Zhang, B. Xie, Y. Du, D. Qu, M. Bonierbale, M. Ghislain, R. Herrera Mdel, G. Giuliano, M. Pietrella, G. Perrotta, P. Facella, K. O'Brien, S.E. Feingold, L.E. Barreiro, G.A. Massa, L. Diambra, B.R. Whitty, B. Vaillancourt, H. Lin, A.N. Massa, M. Geoffroy, S. Lundback, D. DellaPenna, C.R. Buell, S.K. Sharma, D.F. Marshall, R. Waugh, G.J. Bryan, M. Destefanis, I. Nagy, D. Milbourne, S.J. Thomson, M. Fiers, J.M. Jacobs, K.L. Nielsen, M. Sonderkaer, M. Iovene, G.A. Torres, J. Jiang, R.E. Veilleux, C.W. Bachem, J. de Boer, T. Borm, B. Kloosterman, H. van Eck, E. Datema, B. Hekkert, A. Goverse, R.C. van Ham, and R.G. Visser. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195.

    CAS  Article  PubMed  Google Scholar 

  44. Zhang S., and X. Wang. 2008. Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chinese Science Bulletin 53: 3839–3846.

    CAS  Google Scholar 

  45. Zhang S., C. Yang, J. Peng, S. Sun, and X. Wang. 2009. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Molecular Biology 69: 745–759.

    CAS  Article  PubMed  Google Scholar 

  46. Zimmermann R., H. Sakai, and F. Hochholdinger. 2010. The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiology 152: 356–365.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by PEAEBIO 245001/711, PNBIO 1131022/3 (INTA), AECID D/024562/09 and PICT 2011-1377. We thank Julia Sabio for her invaluable help as English editor. Sequencing service and bioinformatics analyses were performed at National Institute of Agricultural Technology, Biotechnology Institute, Genomics Unit and Bioinformatics Unit respectively.

Author Contribution Statement

VN participated in the design of the study, carried out the molecular techniques and drafted the manuscript. MGU contributed to data interpretation and helped to draft the manuscript. MR participated in the design of the study and contributed to data interpretation. NP helped to draft the manuscript. HEH assisted in the interpretation of the results and contribute to writing the manuscript revising it critically. NIA contributed to data interpretation and helped to draft the manuscript. CVR conceived and coordinated the study, contributed to the work by the discussion of the data and helped to draft the manuscript. All authors read and approved the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cecilia Vazquez-Rovere.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nahirñak, V., Rivarola, M., Gonzalez de Urreta, M. et al. Genome-wide Analysis of the Snakin/GASA Gene Family in Solanum tuberosum cv. Kennebec. Am. J. Potato Res. 93, 172–188 (2016). https://doi.org/10.1007/s12230-016-9494-8

Download citation

Keywords

  • Snakin/GASA
  • Cysteine-rich domain
  • Potato
  • Plant development
  • Stress responses